Balance Nacional de Energía
BALANCE NACIONAL DE ENERGÍA 2017

Francisco Atilio Ísmodes Mezzano
Ministro de Energía y Minas

Javier David Campos Gavilán
Director General de Eficiencia Energética (e)

Colaboración
Ing. Giannina Ibarra Vásquez
Dr. Manuel Heredia Muñoz
Eco. Luis Isla Castañeda
Ing. Jose Luis Caro

MINISTERIO DE ENERGÍA Y MINAS
Av. Las Artes Sur 260, San Borja
Teléfono (+511) 4111100 Anexo 2601
www.minem.gob.pe
Tabla de Contenido

INTRODUCCIÓN

I. RESUMEN EJECUTIVO ... 13

 1.1. ENERGÍA PRIMARIA .. 13
 1.2. CENTROS DE TRANSFORMACIÓN .. 15
 1.3. ENERGÍA SECUNDARIA .. 17
 1.4. CONSUMO FINAL DE ENERGÍA .. 19
 1.5. MATRIZ Y FLUJO DE ENERGÍA ... 21

II. METODOLOGÍA GENERAL DEL BALANCE ENERGÉTICO .. 24

 2.1. ESTRUCTURA GENERAL .. 24
 2.2. CONVERSIÓN DE SIGNOS .. 26
 2.3. OPERACIONES BÁSICAS DE LA MATRIZ .. 26

III. ENERGÍA PRIMARIA ... 29

 3.1. RESERVAS .. 29
 3.2. PRODUCCIÓN DE ENERGÍA PRIMARIA ... 30
 3.3. IMPORTACIÓN DE ENERGÍA PRIMARIA ... 32
 3.4. EXPORTACIÓN DE ENERGÍA PRIMARIA .. 32
 3.5. ENERGÍA PRIMARIA NO APROVECHADA ... 33
 3.6. OFERTA INTERNA BRUTA DE ENERGÍA PRIMARIA ... 33

IV. CENTROS DE TRANSFORMACIÓN .. 35

 4.1. CENTRALES ELÉCTRICAS ... 35
 4.2. REFINERÍAS DE PETRÓLEO .. 35
 4.3. PLANTAS DE PROCESAMIENTO DE GAS NATURAL ... 35
 4.4. CARBONERAS ... 36
 4.5. COQUERÍAS Y ALTOS HORNOS .. 36

V. ENERGÍA SECUNDARIA .. 38

 5.1. PRODUCCIÓN DE ENERGÍA SECUNDARIA .. 38
 5.2. IMPORTACIÓN DE ENERGÍA SECUNDARIA .. 39
 5.3. EXPORTACIÓN DE ENERGÍA SECUNDARIA .. 39
 5.4. OFERTA FINAL DE ENERGÍA SECUNDARIA ... 39

VI. CONSUMO FINAL DE ENERGÍA .. 42

 6.1. CONSUMO FINAL POR FUENTE ... 44
Tabla de Ilustraciones

ILUSTRACIÓN 1: PRODUCCIÓN DE ENERGÍA SECUNDARIA 2017 .. 18
ILUSTRACIÓN 2: DIAGRAMA DE FLUJO SECTOR HIDROCARBUROS LÍQUIDOS AÑO 2017 22
ILUSTRACIÓN 3: DIAGRAMA DE FLUJO SECTOR ELECTRICO AÑO 2017 .. 22
ILUSTRACIÓN 4: RESERVAS PROBADAS DE ENERGÍA COMERCIAL: 2017 ... 30
ILUSTRACIÓN 5: PARTICIPACIÓN DE PRODUCCIÓN INTERNAS DE ENERGÍA PRIMARIA 2017 31
ILUSTRACIÓN 6: PRODUCCIÓN DE ENERGÍA SECUNDARIA 2017 .. 38
ILUSTRACIÓN 7: CONSUMO FINAL DE ENERGÍA SECUNDARIA 2017 ... 40
ILUSTRACIÓN 8: CONSUMO FINAL DE ENERGÍA POR FUENTES 2017 .. 45
ILUSTRACIÓN 9: CONSUMO FINAL TOTAL DE ENERGÍA POR SECTORES ECONÓMICOS 2017 46
ILUSTRACIÓN 10: CONSUMO FINAL DE ENERGÍA PRIMARIA – NACIONAL .. 47
ILUSTRACIÓN 11: CONSUMO FINAL DE ENERGÍA SECUNDARIA – NACIONAL .. 47
ILUSTRACIÓN 12: CONSUMO FINAL POR TIPO DE ENERGÍA – NACIONAL ... 48
ILUSTRACIÓN 13: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA - NACIONAL 48
ILUSTRACIÓN 14: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA - NACIONAL 49
ILUSTRACIÓN 15: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA – NACIONAL 49
ILUSTRACIÓN 16: CONSUMO DE ENERGÍA SECTOR RESIDENCIAL – ENERGÍA PRIMARIA 50
ILUSTRACIÓN 17: CONSUMO DE ENERGÍA SECTOR RESIDENCIAL – ENERGÍA SECUNDARIA 51
ILUSTRACIÓN 18: CONSUMO DE ENERGÍA SECTOR RESIDENCIAL – POR TIPO DE ENERGÍA 51
ILUSTRACIÓN 19: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR RESIDENCIAL 52
ILUSTRACIÓN 20: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR RESIDENCIAL 52
ILUSTRACIÓN 21: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA – SECTOR RESIDENCIAL 53
ILUSTRACIÓN 22: CONSUMO DE ENERGÍA SECTOR COMERCIAL – ENERGÍA PRIMARIA 53
ILUSTRACIÓN 23: CONSUMO DE ENERGÍA SECTOR COMERCIAL – ENERGÍA SECUNDARIA 54
ILUSTRACIÓN 24: CONSUMO DE ENERGÍA SECTOR COMERCIAL – POR TIPO DE ENERGÍA 54
ILUSTRACIÓN 25: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR COMERCIAL 55
ILUSTRACIÓN 26: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR COMERCIAL 55
ILUSTRACIÓN 27: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA – SECTOR COMERCIAL 56
ILUSTRACIÓN 28: CONSUMO DE ENERGÍA SECTOR PÚBLICO – ENERGÍA PRIMARIA ... 56
ILUSTRACIÓN 29: CONSUMO DE ENERGÍA SECTOR PÚBLICO – ENERGÍA SECUNDARIA 57
ILUSTRACIÓN 30: CONSUMO DE ENERGÍA SECTOR COMERCIAL – POR TIPO DE ENERGÍA 57
ILUSTRACIÓN 31: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR PÚBLICO 58
ILUSTRACIÓN 32: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR COMERCIAL 58
ILUSTRACIÓN 33: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA – SECTOR PÚBLICO 59
ILUSTRACIÓN 34: CONSUMO DE ENERGÍA SECTOR TRANSPORTE – ENERGÍA SECUNDARIA 59
ILUSTRACIÓN 35: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR TRANSPORTE 60
ILUSTRACIÓN 36: CONSUMO DE ENERGÍA SECTOR INDUSTRIAL – ENERGÍA PRIMARIA 60
ILUSTRACIÓN 37: CONSUMO DE ENERGÍA SECTOR INDUSTRIAL – ENERGÍA SECUNDARIA 61
ILUSTRACIÓN 38: CONSUMO DE ENERGÍA SECTOR INDUSTRIAL – POR TIPO DE ENERGÍA 61
ILUSTRACIÓN 39: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR INDUSTRIAL 62
ILUSTRACIÓN 40: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR INDUSTRIAL 62
ILUSTRACIÓN 41: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA – SECTOR INDUSTRIAL 63
ILUSTRACIÓN 42: CONSUMO DE ENERGÍA SECTOR PESCA – ENERGÍA PRIMARIA ... 63
ILUSTRACIÓN 43: CONSUMO DE ENERGÍA SECTOR PESCA – ENERGÍA SECUNDARIA 64
ILUSTRACIÓN 44: CONSUMO DE ENERGÍA SECTOR PESCA – POR TIPO DE ENERGÍA 64
ILUSTRACIÓN 45: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR PESCA 65
ILUSTRACIÓN 46: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR PESCA 65
ILUSTRACIÓN 47: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA – SECTOR PESCA 66
ILUSTRACIÓN 48: CONSUMO DE ENERGÍA SECTOR AGROPECUARIO – ENERGÍA PRIMARIA 66
ILUSTRACIÓN 49: CONSUMO DE ENERGÍA SECTOR AGROPECUARIO – ENERGÍA SECUNDARIA 67
ILUSTRACIÓN 50: CONSUMO DE ENERGÍA SECTOR AGROPECUARIO – POR TIPO DE ENERGÍA 67
ILUSTRACIÓN 51: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR AGROPECUARIO 68
ILUSTRACIÓN 52: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR AGROPECUARIO 68
ILUSTRACIÓN 53: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA – SECTOR AGROPECUARIO 69
ILUSTRACIÓN 54: CONSUMO DE ENERGÍA SECTOR MINERÍA – ENERGÍA PRIMARIA .. 69
ILUSTRACIÓN 55: CONSUMO DE ENERGÍA SECTOR MINERÍA – ENERGÍA SECUNDARIA 70
ILUSTRACIÓN 56: CONSUMO DE ENERGÍA SECTOR MINERÍA – POR TIPO DE ENERGÍA ... 70
ILUSTRACIÓN 57: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR MINERÍA 71
ILUSTRACIÓN 58: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR MINERÍA 71
ILUSTRACIÓN 59: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA – SECTOR MINERÍA 72
ILUSTRACIÓN 60: BALANCE ENERGÉTICO NACIONAL 2017 .. 75
ILUSTRACIÓN 61: BALANCE ENERGÉTICO NACIONAL 2017 .. 76
ILUSTRACIÓN 62: BALANCE ENERGÉTICO NACIONAL 2017 .. 77
ILUSTRACIÓN 63: EMISSIONES DE CO₂ EQUIVALENTES GENERADAS POR LA TRANSFORMACIÓN DE ENERGÍA PRIMARIA EN SECUNDARIA, CONSUMO PROPIO Y SECTORES ECONÓMICOS .. 79
ILUSTRACIÓN 64: EMISSIONES DE CO₂ GENERADAS POR LA TRANSFORMACIÓN DE ENERGÍA PRIMARIA EN SECUNDARIA Y EL CONSUMO PROPIO .. 80
ILUSTRACIÓN 65: EMISSIONES DE CO₂ GENERADAS POR EL CONSUMO FINAL DE ENERGÍA 80
ILUSTRACIÓN 66: EMISSIONES DE CO₂ GENERADAS POR SECTORES ECONÓMICOS .. 81
ILUSTRACIÓN 67: EMISSIONES DE CH₄ GENERADAS POR LA TRANSFORMACIÓN DE ENERGÍA PRIMARIA EN SECUNDARIA Y EL CONSUMO PROPIO .. 81
ILUSTRACIÓN 68: EMISSIONES DE CH₄ GENERADAS POR EL CONSUMO FINAL DE ENERGÍA 82
ILUSTRACIÓN 69: EMISSIONES DE CH₄ GENERADAS POR SECTORES ECONÓMICOS .. 82
ILUSTRACIÓN 70: EMISSIONES DE N₂O GENERADAS POR LA TRANSFORMACIÓN DE ENERGÍA 83
ILUSTRACIÓN 71: EMISSIONES DE N₂O GENERADAS POR EL CONSUMO FINAL DE ENERGÍA 83
ILUSTRACIÓN 72: EMISSIONES DE N₂O GENERADAS POR SECTORES ECONÓMICOS .. 84
ILUSTRACIÓN 73: PBI NACIONAL Y SECTORIAL .. 86
ILUSTRACIÓN 74: COMPOSICIÓN SECTORIAL DEL PBI .. 87
ILUSTRACIÓN 75: INVERSIÓN PÚBLICO-PRIVADA .. 87
ILUSTRACIÓN 76: PBI PER CÁPITA VS IDH ... 88
ILUSTRACIÓN 77: PBI ENERGÍA ... 89
ILUSTRACIÓN 78: POBLACIÓN Y PEA OCUPADA .. 89
ILUSTRACIÓN 79: COEFICIENTE DE ELECTRIFICACIÓN RURAL E INVERSIÓN ... 90
ILUSTRACIÓN 80: COEFICIENTE DE ELECTRIFICACIÓN E INVERSIÓN EN DISTRIBUCIÓN 90
ILUSTRACIÓN 81: INTENSIDAD ENERGÉTICA NACIONAL ... 91
ILUSTRACIÓN 82: INTENSIDAD ENERGÉTICA AMERICA LÁTINA Y MÉXICO ... 92
ILUSTRACIÓN 83: CONSUMO PER CÁPITA NACIONAL .. 92
ILUSTRACIÓN 84: CONSUMO PER CÁPITA AMERICA LÁTINA Y MÉXICO .. 93
ILUSTRACIÓN 85: IDH VS IE .. 94
ILUSTRACIÓN 86: IDH VS IE PARA AMERICA LÁTINA Y MÉXICO .. 94
ILUSTRACIÓN 87: IDH VS CONSUMO PER CÁPITA ... 95
ILUSTRACIÓN 88: IDH VS IE PARA AMERICA LÁTINA Y MÉXICO .. 96
ILUSTRACIÓN 89: INTENSIDAD DEL CARBONO .. 96
ILUSTRACIÓN 90: INTENSIDAD DEL CH₄ Y NOX .. 97
ILUSTRACIÓN 91: ESQUEMA DE LA CADENA DE ENERGÍA ELÉCTRICA ... 99
ILUSTRACIÓN 94: PARTICIPACIÓN DE LA ENERGÍA PRIMARIA MERCADO ELÉCTRICO 100
ILUSTRACIÓN 93: EVALUACIÓN DEL CONSUMO DE CARBÓN MINERAL .. 101
ILUSTRACIÓN 94: EVALUACIÓN DEL CONSUMO DE BAGAZO .. 102
ILUSTRACIÓN 95: PRODUCCIÓN DE CENTRALES HIDROELÉCTRICAS .. 103
ILUSTRACIÓN 96: PRODUCCIÓN DE CENTRALES SOLARES ... 104
ILUSTRACIÓN 97: PRODUCCIÓN DE CENTRALES ÉOLICAS ... 104
ILUSTRACIÓN 98: EVALUACIÓN DEL CONSUMO DE BIOGÁS .. 105
ILUSTRACIÓN 99: PARTICIPACIÓN EN LA POTENCIA INSTALADA MERCADO ELÉCTRICO 107
ILUSTRACIÓN 100: PARTICIPACIÓN EN LA POTENCIA INSTALADA USO PROPIO ... 107
ILUSTRACIÓN 101: EVOLUCIÓN DE LA POTENCIA EFECTIVA MERCADO ELÉCTRICO ... 108
ILUSTRACIÓN 102: EVOLUCIÓN DE LA POTENCIA EFECTIVA USO PROPIO ... 108
ILUSTRACIÓN 103: PARTICIPACIÓN EN LA PRODUCCIÓN DE ENERGÍA ELÉCTRICA A NIVEL NACIONAL 109
ILUSTRACIÓN 104: PRODUCCIÓN DE ENERGÍA ELÉCTRICA DEL MERCADO ELÉCTRICO 110
ILUSTRACIÓN 105: PRODUCCIÓN DE ENERGÍA ELÉCTRICA DE USO PROPIO .. 110
ILUSTRACIÓN 106: CONSUMO DE COMBUSTIBLE POR TIPO DE MERCADO ... 112
ILUSTRACIÓN 107: PARTICIPACIÓN DE COMBUSTIBLES EN EL MERCADO ELÉCTRICO 112
ILUSTRACIÓN 108: PARTICIPACIÓN DE COMBUSTIBLES EN USO PROPIO ... 113
ILUSTRACIÓN 109: PARTICIPACIÓN DE COMBUSTIBLES EN EL MERCADO ELÉCTRICO 113

ÁREA DE PLANEAMIENTO ENERGÉTICO/DGEE
ILUSTRACIÓN 110: PARTICIPACIÓN DE COMBUSTIBLES EN USO PROPIO

ILUSTRACIÓN 111: EVALUACIÓN DEL CONSUMO DE DIESEL

ILUSTRACIÓN 112: EVALUACIÓN DEL CONSUMO DE FUEL OIL

ILUSTRACIÓN 113: EVALUACIÓN DEL CONSUMO DE GAS NATURAL

ILUSTRACIÓN 114: SECTORES INTENSIVOS EN CONSUMO DE ENERGÍA ELÉCTRICA

ILUSTRACIÓN 115: ESTRUCTURA DEL CONSUMO FINAL DE ENERGÍA ELÉCTRICA POR SECTORES

ILUSTRACIÓN 116: ESTRUCTURA DEL CONSUMO POR TIPO DE CLIENTE AL 2017

ILUSTRACIÓN 117: EVOLUCIÓN DEL CONSUMO FINAL DE ENERGÍA ELÉCTRICA POR SECTORES

ILUSTRACIÓN 118: RESUMEN DEL BALANCE DE ENERGÍA ELÉCTRICA

ILUSTRACIÓN 119: DIAGRAMA DE FLUJO DEL BALANCE NACIONAL DE ENERGÍA ELÉCTRICA: 2017

ILUSTRACIÓN 120: POTENCIAL TÉCNICO PARA APROVECHAMIENTO RER PARA GENERACIÓN DE ELECTRICIDAD

ILUSTRACIÓN 121: ESQUEMA DE LA CADENA ENERGÉTICA DE ENERGÍA SOLAR

ILUSTRACIÓN 122: ESQUEMA DE LA CADENA ENERGÉTICA DE ENERGÍAS RENOVABLES (EXCLUYENDO SOLAR)

ILUSTRACIÓN 123: EVOLUCIÓN DE ENERGÍA SOLAR 2010-2017

ILUSTRACIÓN 124: EVOLUCIÓN DE ENERGÍA FOTOVOLTAICA Y DE ENERGÍA TÉRMICA SOLAR

ILUSTRACIÓN 125: EVOLUCIÓN DE ENERGÍA FOTOVOLTAICA DESTINADA PARA MERCADO ELÉCTRICO VS. PARA USO PROPIO

ILUSTRACIÓN 126: EVOLUCIÓN DE LA GENERACIÓN ÉOLICA

ILUSTRACIÓN 128: ESQUEMA DE LA CADENA DE GAS NATURAL

ILUSTRACIÓN 129: RESERVAS Y RECURSOS DE GAS NATURAL 2004-2016

ILUSTRACIÓN 130: EVOLUCIÓN DE LA PRODUCCIÓN DE GAS NATURAL

ILUSTRACIÓN 131: RESERVAS Y RECURSOS DE LÍQUIDOS DE GAS NATURAL 2004-2016

ILUSTRACIÓN 132: EVOLUCIÓN DE LA PRODUCCIÓN DE LÍQUIDOS DE GAS NATURAL

ILUSTRACIÓN 133: GAS NATURAL NO APROVECHADO 2017

ILUSTRACIÓN 134: EVOLUCIÓN DEL GAS NATURAL NO APROVECHADO 2017

ILUSTRACIÓN 135: PARTICIPACIÓN DE LAS VENTAS DE GAS NATURAL

ILUSTRACIÓN 136: USOS DEL GAS DISTRIBUIDO DURANTE EL 2017

ILUSTRACIÓN 137: EVOLUCIÓN DE LOS USOS DE GAS DISTRIBUIDO

ILUSTRACIÓN 138: EVOLUCIÓN DEL NÚMERO DE CLIENTES – CALIDDA

ILUSTRACIÓN 139: EVOLUCIÓN DEL NÚMERO DE CLIENTES – CONTUGAS

ILUSTRACIÓN 140: EVOLUCIÓN DEL NÚMERO DE VEHÍCULOS

ILUSTRACIÓN 141: EVOLUCIÓN DE LAS EXPORTACIONES DE GAS NATURAL

ILUSTRACIÓN 142: EVOLUCIÓN DE LOS PRODUCTOS DERIVADOS A PARTIR DE LÍQUIDOS DE GAS NATURAL

ILUSTRACIÓN 143: ESQUEMA DE LA CADENA DE HIDROCARBUROS LÍQUIDOS

ILUSTRACIÓN 144: RESERVAS Y RECURSOS DE PETRÓLEO 2004-2016

ILUSTRACIÓN 145: EVOLUCIÓN DE LA PRODUCCIÓN DE PETRÓLEO

ILUSTRACIÓN 146: EVOLUCIÓN DE LA PRODUCCIÓN DE HIDROCARBUROS LÍQUIDOS

ILUSTRACIÓN 147: EVOLUCIÓN DE LAS CARGAS A REFINERÍAS

ILUSTRACIÓN 148: EVOLUCIÓN DEL CRUDO IMPORTADO SEGÚN LUGAR DE PROCEDENCIA

ILUSTRACIÓN 149: EVOLUCIÓN DE LAS COMPRA PARA MEZCLAS EN PLANTAS Y REFINERÍAS DE BIOCOMBUSTIBLES

ILUSTRACIÓN 150: PARTICIPACIÓN DE LA PRODUCCIÓN DE DERIVADOS DE PETRÓLEO CRUDO

ILUSTRACIÓN 151: EVOLUCIÓN DE LA PRODUCCIÓN DE DERIVADOS DE PETRÓLEO CRUDO

ILUSTRACIÓN 152: PARTICIPACIÓN DE LAS VENTAS DE DERIVADOS DE PETRÓLEO CRUDO Y LÍQUIDOS DE GAS NATURAL EN EL MERCADO INTERNO – 2017

ILUSTRACIÓN 153: VENTAS DE DERIVADOS DE PETRÓLEO CRUDO Y LÍQUIDOS DE GAS NATURAL EN EL MERCADO INTERNO

ILUSTRACIÓN 154: CONSUMO FINAL DE LOS DERIVADOS DE HIDROCARBUROS LÍQUIDOS Y BIOCOMBUSTIBLES POR SECTORES ECONÓMICOS

ILUSTRACIÓN 155: BALANZA COMERCIAL DE HIDROCARBUROS

ILUSTRACIÓN 156: BALANZA COMERCIAL DE HIDROCARBUROS

ILUSTRACIÓN 157: PRECIOS DE IMPORTACIÓN DEL PETRÓLEO, DERIVADOS DE LOS HIDROCARBUROS Y BIOCOMBUSTIBLES

ILUSTRACIÓN 158: PRECIOS DE EXPORTACIÓN DEL PETRÓLEO, DERIVADOS DE LOS HIDROCARBUROS Y BIOCOMBUSTIBLES

ILUSTRACIÓN 159: DIAGRAMA DE FLUJO DEL BALANCE NACIONAL DE HIDROCARBUROS LÍQUIDOS: 2017

ILUSTRACIÓN 160: DIAGRAMA DE FLUJO DEL BALANCE NACIONAL DE GAS NATURAL: 2017
ILUSTRACIÓN 161: ESQUEMA DE LA CADENA DE CARBÓN MINERAL Y DERIVADOS .. 167
ILUSTRACIÓN 162: YACIMIENTOS DE CARBÓN MINERAL EN EL PERÚ .. 168
ILUSTRACIÓN 163: ESTRUCTURA DE LAS IMPORTACIONES DE CARBÓN .. 171
ILUSTRACIÓN 164: IMPORTACIONES DE CARBÓN POR PAÍS DE ORIGEN .. 171
ILUSTRACIÓN 165: ESTRUCTURA DE CONSUMO DE CARBÓN EN EL SECTOR INDUSTRIA - METALÚRGICA 173
ILUSTRACIÓN 166: ESTRUCTURA DEL CONSUMO DE CARBÓN EN EL SECTOR INDUSTRIAL .. 173
ILUSTRACIÓN 167: ESTRUCTURA DEL CONSUMO DE COQUE .. 178
ILUSTRACIÓN 168: BALANCE DE CARBÓN .. 180
ILUSTRACIÓN 169: BALANCE DE COQUE .. 180
ILUSTRACIÓN 172: CONSUMO DE LEÑA POR DEPARTAMENTO – SECTOR RESIDENCIAL .. 190
ILUSTRACIÓN 173: CONSUMO DE CARBÓN VEGETAL POR DEPARTAMENTO – SECTOR RESIDENCIAL 191
ILUSTRACIÓN 174: CONSUMO DE BOSTA Y YARETA POR DEPARTAMENTO – SECTOR RESIDENCIAL 191
Balance Nacional de Energía 2017

Tablas

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1</td>
<td>PRODUCCIÓN INTERNA DE ENERGÍA PRIMARIA 2017</td>
<td>13</td>
</tr>
<tr>
<td>Tabla 2</td>
<td>PRODUCCIÓN Y RESERVAS DE ENERGÍA COMERCIAL 2017</td>
<td>14</td>
</tr>
<tr>
<td>Tabla 3</td>
<td>BALANZA COMERCIAL DE ENERGÍA PRIMARIA 2017</td>
<td>15</td>
</tr>
<tr>
<td>Tabla 4</td>
<td>OFERTA INTERNA BRUTA DE ENERGÍA PRIMARIA 2017</td>
<td>15</td>
</tr>
<tr>
<td>Tabla 5</td>
<td>DESTINO DE LA OFERTA INTERNA DE ENERGÍA PRIMARIA 2017</td>
<td>16</td>
</tr>
<tr>
<td>Tabla 6</td>
<td>DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LOS CENTROS DE TRANSFORMACIÓN 2017</td>
<td>16</td>
</tr>
<tr>
<td>Tabla 7</td>
<td>DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LOS CENTROS DE TRANSFORMACIÓN 2017</td>
<td>17</td>
</tr>
<tr>
<td>Tabla 8</td>
<td>DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LOS CENTROS DE TRANSFORMACIÓN 2017</td>
<td>17</td>
</tr>
<tr>
<td>Tabla 9</td>
<td>PRODUCCIÓN DE ENERGÍA SECUNDARIA 2017</td>
<td>17</td>
</tr>
<tr>
<td>Tabla 10</td>
<td>BALANZA COMERCIAL DE ENERGÍA SECUNDARIA 2017</td>
<td>18</td>
</tr>
<tr>
<td>Tabla 11</td>
<td>CONSUMO FINAL DE ENERGÍA SECUNDARIA 2017</td>
<td>19</td>
</tr>
<tr>
<td>Tabla 12</td>
<td>CONSUMO FINAL DE ENERGÍA POR FUENTES 2017</td>
<td>19</td>
</tr>
<tr>
<td>Tabla 13</td>
<td>CONSUMO FINAL TOTAL DE ENERGÍA POR SECTORES ECONÓMICOS 2017</td>
<td>20</td>
</tr>
<tr>
<td>Tabla 14</td>
<td>MATRIZ ENERGÉTICA NACIONAL 2017</td>
<td>21</td>
</tr>
<tr>
<td>Tabla 15</td>
<td>RESERVAS PROBADAS DE ENERGÍA COMERCIAL 2017</td>
<td>29</td>
</tr>
<tr>
<td>Tabla 16</td>
<td>PRODUCCIÓN INTERNA DE ENERGÍA PRIMARIA 2017</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 17</td>
<td>PRODUCCIÓN Y RESERVAS DE ENERGÍA COMERCIAL 2017</td>
<td>32</td>
</tr>
<tr>
<td>Tabla 18</td>
<td>BALANZA COMERCIAL DE ENERGÍA PRIMARIA 2017</td>
<td>32</td>
</tr>
<tr>
<td>Tabla 19</td>
<td>OFERTA INTERNA BRUTA DE ENERGÍA PRIMARIA 2017</td>
<td>33</td>
</tr>
<tr>
<td>Tabla 20</td>
<td>DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LAS CENTRALES ELÉCTRICAS 2017</td>
<td>35</td>
</tr>
<tr>
<td>Tabla 21</td>
<td>DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LAS REFINERÍAS: 2017</td>
<td>35</td>
</tr>
<tr>
<td>Tabla 22</td>
<td>DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LAS PLANTA DE GAS: 2017</td>
<td>36</td>
</tr>
<tr>
<td>Tabla 23</td>
<td>DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LOS CENTROS DE TRANSFORMACIÓN 2017</td>
<td>36</td>
</tr>
<tr>
<td>Tabla 24</td>
<td>PRODUCCIÓN DE ENERGÍA SECUNDARIA 2017</td>
<td>38</td>
</tr>
<tr>
<td>Tabla 25</td>
<td>BALANZA COMERCIAL DE ENERGÍA SECUNDARIA 2017</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 26</td>
<td>CONSUMO FINAL DE ENERGÍA SECUNDARIA 2017</td>
<td>40</td>
</tr>
<tr>
<td>Tabla 27</td>
<td>CONSUMO FINAL DE ENERGÍA POR FUENTES 2017</td>
<td>44</td>
</tr>
<tr>
<td>Tabla 28</td>
<td>CONSUMO FINAL TOTAL DE ENERGÍA POR SECTORES ECONÓMICOS 2017</td>
<td>45</td>
</tr>
<tr>
<td>Tabla 29</td>
<td>ENERGÍA PRIMARIA PARA GENERACIÓN DE ENERGÍA ELÉCTRICA</td>
<td>100</td>
</tr>
<tr>
<td>Tabla 30</td>
<td>ENERGÍA PRIMARIA PARA GENERACIÓN DE ENERGÍA ELÉCTRICA</td>
<td>100</td>
</tr>
<tr>
<td>Tabla 31</td>
<td>TECNOLOGÍAS PARA GENERACIÓN DE ENERGÍA ELECTRICA</td>
<td>106</td>
</tr>
<tr>
<td>Tabla 32</td>
<td>POTENCIA INSTALADA POR TIPO DE MERCADO</td>
<td>106</td>
</tr>
<tr>
<td>Tabla 33</td>
<td>CENTRALES QUE INGRESARON Y SE RETIRARON DEL SEIN EN EL 2017</td>
<td>108</td>
</tr>
<tr>
<td>Tabla 34</td>
<td>PRODUCCIÓN DE ENERGÍA ELÉCTRICA 2017</td>
<td>111</td>
</tr>
<tr>
<td>Tabla 35</td>
<td>CONSUMO DE COMBUSTIBLE</td>
<td>111</td>
</tr>
<tr>
<td>Tabla 36</td>
<td>PÉRDIDAS DE TRANSFORMACIÓN</td>
<td>116</td>
</tr>
<tr>
<td>Tabla 37</td>
<td>CONSUMO FINAL DE ENERGÍA ELÉCTRICA POR SECTORES</td>
<td>117</td>
</tr>
<tr>
<td>Tabla 38</td>
<td>BALANCE NACIONAL DE ENERGÍA ELÉCTRICA: 2017</td>
<td>120</td>
</tr>
<tr>
<td>Tabla 39</td>
<td>BALANCE NACIONAL DE ENERGÍA ELÉCTRICA: 2017</td>
<td>121</td>
</tr>
<tr>
<td>Tabla 40</td>
<td>MATRIZ DE LA BIOMASA</td>
<td>123</td>
</tr>
<tr>
<td>Tabla 41</td>
<td>PRODUCCIÓN DE ENERGÍA</td>
<td>126</td>
</tr>
<tr>
<td>Tabla 42</td>
<td>BALANCE DE ENERGÍA SOLAR 2017</td>
<td>128</td>
</tr>
<tr>
<td>Tabla 43</td>
<td>BALANCE DE ENERGÍA EÓLICA 2017</td>
<td>131</td>
</tr>
<tr>
<td>Tabla 44</td>
<td>CENTRALES SOLAR FOTOVOLTAICA</td>
<td>133</td>
</tr>
<tr>
<td>Tabla 45</td>
<td>CENTRALES EÓLICAS</td>
<td>133</td>
</tr>
<tr>
<td>Tabla 46</td>
<td>CENTRALES A BIOGÁS Y BIOMASA</td>
<td>133</td>
</tr>
<tr>
<td>Tabla 47</td>
<td>RESERVAS DE HIDROCARBUROS AL 31.12.2016</td>
<td>135</td>
</tr>
<tr>
<td>Tabla 48</td>
<td>PRODUCCIÓN DE GAS NATURAL</td>
<td>136</td>
</tr>
<tr>
<td>Tabla 49</td>
<td>RESERVAS DE HIDROCARBUROS AL 31.12.2016</td>
<td>137</td>
</tr>
<tr>
<td>Tabla 50</td>
<td>PRODUCCIÓN DE LÍQUIDOS DE GAS NATURAL</td>
<td>138</td>
</tr>
<tr>
<td>Tabla 51</td>
<td>INFRAESTRUCTURA EXISTENTE DE GAS NATURAL</td>
<td>140</td>
</tr>
<tr>
<td>Tabla 52</td>
<td>INFRAESTRUCTURA DE TRANSPORTE DE GAS NATURAL</td>
<td>140</td>
</tr>
<tr>
<td>Tabla 53</td>
<td>EVOLUCIÓN DE LAS VENTAS DE GAS NATURAL</td>
<td>142</td>
</tr>
<tr>
<td>Tabla 54</td>
<td>USOS DEL GAS DISTRIBUIDO DURANTE EL 2017</td>
<td>143</td>
</tr>
</tbody>
</table>
TABLA 55: PRODUCTOS DERIVADOS A PARTIR DE LÍQUIDOS DE GAS NATURAL .. 147
TABLA 57: PRODUCCIÓN DE PETRÓLEO ... 149
TABLA 58: INFRAESTRUCTURA EXISTENTE EN REFINERÍAS DE PETRÓLEO .. 151
TABLA 59: CARGAS A REFINERÍAS ... 151
TABLA 60: PETRÓLEO CRUDO PROCESADO EN REFINERÍAS SEGÚN LUGAR DE PROCEDENCIA 152
TABLA 61: EVOLUCIÓN DEL CRUDO IMPORTADO SEGÚN LUGAR DE PROCEDENCIA 153
TABLA 62: COMPRAS PARA MEZCLAS EN PLANTAS Y REFINERÍAS .. 154
TABLA 63: PRODUCCIÓN DE DERIVADOS DE PETRÓLEO CRUDO .. 155
TABLA 64: EVOLUCIÓN DE LA PRODUCCIÓN DE DERIVADOS DE PETRÓLEO CRUDO 156
TABLA 65: PRODUCCIÓN DE BIOCOMBUSTIBLES .. 157
TABLA 66: VENTAS DE DERIVADOS DE PETRÓLEO CRUDO Y LÍQUIDOS DE GAS NATURAL EN EL MERCADO INTERNO 158
TABLA 67: CONSUMO FINAL DE LOS DERIVADOS DE HIDROCARBUROS LÍQUIDOS Y BIOCOMBUSTIBLES POR SECTORES ECONÓMICOS ... 159

TABLA 68: BALANZA COMERCIAL DE HIDROCARBUROS Y BIOCOMBUSTIBLES 161
TABLA 69: BALANZA COMERCIAL DE HIDROCARBUROS Y BIOCOMBUSTIBLES 161
TABLA 70: PRECIOS DE IMPORTACIÓN DEL PETRÓLEO, DERIVADOS DE LOS HIDROCARBUROS Y BIOCOMBUSTIBLES 162
TABLA 71: PRECIOS DE EXPORTACIÓN DEL PETRÓLEO, DERIVADOS DE LOS HIDROCARBUROS Y BIOCOMBUSTIBLES 162
TABLA 72: BALANCE NACIONAL DE HIDROCARBUROS Y BIOCOMBUSTIBLES: 2017 164
TABLA 73: BALANCE NACIONAL DE HIDROCARBUROS Y BIOCOMBUSTIBLES: 2017 164
TABLA 74: PRODUCCIÓN NACIONAL DE CARBÓN .. 169
TABLA 75: IMPORTACIÓN DE CARBÓN ... 170
TABLA 76: CONSUMO DE CARBÓN MINERAL POR SECTORES: 2017 ... 174
TABLA 77: BALANCE DE CARBÓN MINERAL: 2017 ... 175
TABLA 78: BALANCE DE CARBÓN MINERAL: 2017 ... 176
TABLA 79: IMPORTACIÓN DE COQUE ... 177
TABLA 80: CONSUMO DE COQUE ... 177
TABLA 81: BALANCE DE COQUE: 2017 .. 178
TABLA 82: BALANCE DE COQUE: 2017 .. 179
TABLA 83: CONSUMO FINAL DE ENERGÉTICOS .. 182
TABLA 84: CONSUMO DE ENERGÍA EN EL SECTOR RESIDENCIAL .. 183
TABLA 85: CONSUMO DE ENERGÍA EN EL SECTOR RESIDENCIAL .. 184
TABLA 86: CONSUMO DE ENERGÍA EN EL SECTOR PÚBLICO ... 185
TABLA 87: CONSUMO DE ENERGÍA EN EL SECTOR AGROPECUARIO .. 186
TABLA 88: CONSUMO DE ENERGÍA EN EL SECTOR PESQUERO .. 187
TABLA 89: CONSUMO DE ENERGÍA EN EL SECTOR MINERO ... 188
TABLA 90: CONSUMO DE ENERGÍA EN EL SECTOR INDUSTRIAL ... 189
TABLA 91: FACTORES DE CONVERSIÓN ... 192
TABLA 92: RELACIÓN ENTRE UNIDADES DE ENERGÍA .. 192
BALANCE NACIONAL DE ENERGÍA 2017

PRESENTACIÓN

El Ministerio de Energía y Minas, a través de la Dirección General de Eficiencia Energética, presenta el Balance Nacional de Energía–BNE correspondiente al año 2017, con el propósito de dar a conocer los resultados de los flujos físicos de los diferentes energéticos utilizados en el país, mediante los cuales, la energía se produce, intercambia con el exterior, transforma, consume, etc.; todo calculado en una unidad energética común.

La Metodología utilizada para la elaboración del Balance Nacional de Energía del Perú, se basa en la metodología de la Organización Latinoamericana de Energía (OLADE), y respecto de la presentación de la información contenida en este documento, ésta se basa en el “Sistema Legal de Unidades de Medida del Perú” que se estableció mediante Ley N° 23560. Es preciso señalar, que las cifras de los totales y subtotales presentados en las tablas del presente documento han sido redondeadas al valor entero más cercano.

La primera parte de este documento, presenta las reservas probadas de energía comercial del país, el balance de energía primaria, el balance de energía secundaria y el consumo final de energía según el tipo de fuente por cada sector económico, se muestra la evolución del consumo final durante el período 1990 – 2017, el impacto al ambiente del uso de la energía y los indicadores económicos-energéticos-ambientales. La segunda parte comprende los anexos donde se detallan los balances individuales por cada fuente de energía, se indican estructuras de producción y consumo, así como se detalla la metodología para su elaboración.

La última parte del documento presenta los resultados de los cálculos de emisiones en la transformación de energía primaria a secundaria y consumo propio, y los resultados de distribución de renta versus la participación de consumo de fuentes no comerciales.

Finalmente, el Ministerio de Energía y Minas agradece a todas las entidades y personas vinculadas al sector energético, por el apoyo brindado, a través del suministro de información y sugerencias, que han hecho posible la elaboración de la presente publicación.
RESUMEN EJECUTIVO
I. RESUMEN EJECUTIVO

1.1. ENERGÍA PRIMARIA

En el año 2017, la producción de energía interna primaria (producción de energía menos la energía no aprovechada) fue 1 041 065 TJ, lo cual es 1,3 % menor a lo producido en el año anterior. Durante el 2017, la producción de Gas Natural y de Líquidos de Gas Natural fue 5,3 % menor a la producción del año anterior y la producción de petróleo crudo aumentó en 7,6%.

En cuanto al uso de la energía no comercial, se aprecia una caída de la producción de leña y de bosta y yareta de aproximadamente 5,4 y 11,7% respectivamente.

En la estructura de producción de energía primaria, los hidrocarburos continúan prevaleciendo como la fuente principal. Asimismo, la producción de energía comercial (conformada por todas aquellas fuentes de energía susceptibles a ser fácilmente compradas o vendidas en un mercado) representó el 87,6 % del total.

Tabla 1: PRODUCCIÓN INTERNA DE ENERGÍA PRIMARIA 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Natural + LGN (*)</td>
<td>719 321</td>
<td>681 077</td>
<td>-5,3</td>
</tr>
<tr>
<td>Petróleo Crudo</td>
<td>85 545</td>
<td>92 073</td>
<td>7,6</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>108 709</td>
<td>130 771</td>
<td>20,3</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>7 343</td>
<td>8 308</td>
<td>13,1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>920 918</td>
<td>912 230</td>
<td>-0,9</td>
</tr>
</tbody>
</table>

Energía No Comercial			
Leña	107 231	101 387	-5,4
Bagazo	18 248	19 609	7,5
Bosta & Yareta	5 967	5 269	-11,7
Energía Solar (**)	2 258	2 569	13,8
Subtotal	133 703	128 835	-3,6
TOTAL	1 054 622	1 041 065	-1,3

(*) Producción fiscalizada
(**) Estimado

Fuente: Elaboración Propia
1.1.1. Reservas y Producción

La producción de energía comercial registrada en el año 2017 fue 912 230 TJ, siendo la producción de gas natural y sus líquidos la predominante con el 74,7% del total, seguido de la producción de energía de origen hidroeléctrico que representó el 14,3% de la producción total.

Se estima un gran potencial en reservas de gas natural y sus líquidos en áreas cercanas a Camisea, en las cuencas de la costa y zócalo continental, así como también de hidroenergía.

La reserva de energía comercial para el 2017 fue de 29 313 876 TJ. En términos de energía, el Gas Natural es la fuente energética con mayor participación en las reservas, teniendo en consideración que la reserva en hidroenergía se mide considerando la energía media anual a producirse durante 50 años en las centrales eléctricas instaladas, en construcción y en proyecto. Esto se puede apreciar en la Tabla N° 2

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>PRODUCCIÓN</th>
<th>RESERVAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Natural + LGN</td>
<td>681 077</td>
<td>19 933 761</td>
</tr>
<tr>
<td>Petróleo Crudo</td>
<td>92 073</td>
<td>2 518 249</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>130 771</td>
<td>5 965 666</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>8 308</td>
<td>151 218</td>
</tr>
<tr>
<td>Uranio</td>
<td>0</td>
<td>744 981</td>
</tr>
<tr>
<td>TOTAL</td>
<td>912 230</td>
<td>29 313 876</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

No se incluye dentro de este esquema de análisis, la energía no comercial ni la eólica ya que los datos que le corresponden en cuanto a Producción y Reservas son estimaciones que guardan márgenes de error.

1.1.2. Importación y exportación de Energía

La importación de energía primaria durante el año 2017 fue 279 218 TJ lo que representó un incremento de 15,98% con respecto a lo importado en el 2016. El petróleo crudo representó el 94.9 % de lo importado y el carbón mineral el resto.

Durante el año 2017, se vendió al exterior 13 665 TJ de energía primaria, el petróleo crudo tuvo una participación del 24,3%, mientras que el restante fue del carbón mineral (ver Tabla 3). Con relación al año anterior, las exportaciones aumentaron en 40,5 %.
Tabla 3: BALANZA COMERCIAL DE ENERGÍA PRIMARIA 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>IMPORTACIONES</th>
<th>EXPORTACIONES</th>
<th>SALDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo Crudo</td>
<td>264 841</td>
<td>3 316</td>
<td>-261 526</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>14 371</td>
<td>10 349</td>
<td>-4 022</td>
</tr>
<tr>
<td>TOTAL</td>
<td>279 213</td>
<td>13 665</td>
<td>-265 548</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

1.1.3. **Oferta Interna de Energía Primaria**

La oferta interna bruta de energía primaria considera de forma agregada a la producción total, la variación de inventarios y las importaciones; descontando la energía no aprovechada y las exportaciones.

En el año 2017, la oferta interna bruta de energía primaria fue de 1 320 828 TJ, cifra superior en 1,6% respecto al año anterior. La energía comercial representó el 90,2% del total de la oferta interna bruta, tal como se aprecia en la Tabla 4. En dicho cuadro se aprecia que en el 2017 hubo una reducción en la Oferta Interna del gas natural (incluido los líquidos), en 5,3% con respecto del año anterior.

Tabla 4: OFERTA INTERNA BRUTA DE ENERGÍA PRIMARIA 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energi Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Natural + LGN</td>
<td>719 321</td>
<td>681 077</td>
<td>-5,3</td>
</tr>
<tr>
<td>Petróleo Crudo</td>
<td>304 122</td>
<td>350 874</td>
<td>15,4</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>108 709</td>
<td>130 771</td>
<td>20,3</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>33 693</td>
<td>29 264</td>
<td>-13,1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1 165 845</td>
<td>1 191 993</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Energi No Comercial			
Leña	107 231	101 387	-5,4
Bagazo	18 248	19 609	7,5
Bosta & Yareta	5 958	5 269	-11,6
Energía Solar	2 258	2 569	13,8
Subtotal	133 695	128 835	-3,6

| TOTAL | 1 299 539 | 1 320 828 | 1,6 |

Fuente: Elaboración Propia

1.2. **CENTROS DE TRANSFORMACIÓN**

La oferta interna bruta de energía primaria tiene dos destinos: los centros de transformación y el consumo directo.
En el año 2017, se destinaron 1 207 958 TJ a los centros de transformación y, por otro lado, 122 281 TJ fueron destinados al consumo directo o consumo final. De este consumo directo, el consumo de leña sigue siendo el de mayor proporción con un 73,95%.

Tabla 5: DESTINO DE LA OFERTA INTERNA DE ENERGÍA PRIMARIA 2017 (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>DESTINO</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centros de Transformación</td>
<td>1 160 710</td>
<td>1 207 958</td>
<td>4,1</td>
</tr>
<tr>
<td>Consumo Directo</td>
<td>117 550</td>
<td>122 281</td>
<td>4,0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 278 260</td>
<td>1 330 239</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

1.2.1. Centrales Eléctricas

Las centrales eléctricas transformaron 159 494 TJ (82 % hidroenergía, 9 % bagazo, 6 % carbón mineral y el resto es eólica y solar), 90,1 % se transformó en plantas de generación para el mercado eléctrico y el 9,9% restante en plantas de generación para uso propio.

Tabla 6: DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LOS CENTROS DE TRANSFORMACIÓN 2017 (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>DESTINO</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrales Eléctricas</td>
<td>133 272</td>
<td>159 494</td>
<td>20</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>108 709</td>
<td>130 771</td>
<td>20</td>
</tr>
<tr>
<td>Bagazo</td>
<td>7 344</td>
<td>14 308</td>
<td>95</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>12 524</td>
<td>9 366</td>
<td>-25</td>
</tr>
<tr>
<td>Solar</td>
<td>867</td>
<td>1 186</td>
<td>37</td>
</tr>
<tr>
<td>Eólica</td>
<td>3 828</td>
<td>3 862</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

1.2.2. Refinerías y Plantas de Procesamiento de Gas Natural

En el 2017, 356 426 TJ de petróleo crudo fueron procesados en refinerías y 681 081 TJ de líquidos de gas natural en plantas de procesamiento de gas natural, representando el 30 % y 56 % del total de energía primaria destinada a centros de transformación respectivamente.

Tabla 7: DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LOS CENTROS DE TRANSFORMACIÓN 2017 (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>DESTINO</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinerías</td>
<td>304 122</td>
<td>356 426</td>
<td>17</td>
</tr>
<tr>
<td>Planta de Gas</td>
<td>719 321</td>
<td>681 081</td>
<td>-5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
1.2.3. **Carboneras, Coquerías y Altos Hornos**

Al igual que en el año 2016, en el 2017 no se produjo coque a partir de carbón mineral. Por otro lado, se utilizó 10 958 TJ de leña para la producción de carbón vegetal.

Tabla 8: DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LOS CENTROS DE TRANSFORMACIÓN 2017

<table>
<thead>
<tr>
<th>DESTINO</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coquerías y Altos Hornos</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carboneras</td>
<td>3 995</td>
<td>10 958</td>
<td>174</td>
</tr>
<tr>
<td>Leña</td>
<td>3 995</td>
<td>10 958</td>
<td>174</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

1.3. **ENERGÍA SECUNDARIA**

La producción de energía secundaria bruta durante el año 2017 fue de 1 150 841 TJ. En la estructura continúan predominando los hidrocarburos obtenidos de las refinerías y plantas de gas, que participan con el 83,1 % del total producido. La energía eléctrica proveniente de las centrales hidroeléctricas y de las térmicas (a gas natural, diésel B5, petróleo industrial y carbón mineral) participan con el 16,5 % y lo restante corresponde a la participación de carbón vegetal. Cabe señalar que la producción de energía secundaria bruta considera la producción de energéticos (hidrocarburos) utilizados para la producción de energía secundaria (electricidad).

1.3.1. **Producción de Energía Secundaria**

Tabla 9: PRODUCCIÓN DE ENERGÍA SECUNDARIA 2017

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrocarburos</td>
<td>1 077 855</td>
<td>956 681</td>
<td>-11,2</td>
</tr>
<tr>
<td>Electricidad</td>
<td>185 865</td>
<td>189 780</td>
<td>2,1</td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>4 608</td>
<td>4 383</td>
<td>-4,9</td>
</tr>
<tr>
<td>Derivados del Carbón</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 268 328</td>
<td>1 150 845</td>
<td>-9,3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
1.3.2. Importación y exportación de Energía

En el 2017, se realizaron más exportaciones de energía secundaria que importaciones, siendo el principal energético exportado el Gas Natural seco con 229 363 TJ y el principal energético importado fue el Diésel B5 con 157 705 TJ.

Tabla 10: BALANZA COMERCIAL DE ENERGÍA SECUNDARIA 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>IMPORTACIONES</th>
<th>EXPORTACIONES</th>
<th>SALDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coque</td>
<td>1 744</td>
<td>-</td>
<td>1 744</td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Gas Licuado</td>
<td>9 903</td>
<td>2 417</td>
<td>7 487</td>
</tr>
<tr>
<td>Etanol</td>
<td>2 866</td>
<td>-</td>
<td>2866</td>
</tr>
<tr>
<td>Gasohol</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gasolina Motor</td>
<td>39 697</td>
<td>101 892</td>
<td>-62 195</td>
</tr>
<tr>
<td>Turbo</td>
<td>19 225</td>
<td>28 825</td>
<td>-9 600</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>10 567</td>
<td>-</td>
<td>10 567</td>
</tr>
<tr>
<td>Diesel B5</td>
<td>157 705</td>
<td>22 277</td>
<td>135 428</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>922</td>
<td>103 563</td>
<td>-102 641</td>
</tr>
<tr>
<td>Gas Seco</td>
<td>-</td>
<td>229 363</td>
<td>-229 363</td>
</tr>
<tr>
<td>No Energético Petróleo y Gas</td>
<td>7 660</td>
<td>404</td>
<td>7 257</td>
</tr>
<tr>
<td>TOTAL</td>
<td>250 299</td>
<td>488 740</td>
<td>-228 840</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
1.3.1. Oferta Interna de Energía Secundaria

Tabla 11: CONSUMO FINAL DE ENERGÍA SECUNDARIA 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrocarburos</td>
<td>524 771</td>
<td>537 635</td>
<td>2,5</td>
</tr>
<tr>
<td>Electricidad</td>
<td>164 279</td>
<td>167 191</td>
<td>1,8</td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>4 616</td>
<td>4 393</td>
<td>-4,8</td>
</tr>
<tr>
<td>Derivados del Carbón</td>
<td>2 478</td>
<td>2 111</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>696 144</td>
<td>711 330</td>
<td>2,2</td>
</tr>
</tbody>
</table>

*No se ha considerado el "No Energético"
Fuente: Elaboración Propia

1.4. CONSUMO FINAL DE ENERGÍA

Para la obtención del consumo desagregado de los sectores económicos se utilizaron los resultados de los Balances Nacionales de Energía útil de los años 1998 y 2013 en los cuales se llevaron a cabo encuestas. Los resultados de esta encuesta sirvieron para calibrar la estructura de participación de los sectores.

1.4.1. **Consumo Final por Fuente**

En el año 2017, el consumo final total de energía fue 846 324 TJ, superior en 0,5 % con respecto al año anterior. La estructura del consumo final de energía, estuvo conformada de la siguiente manera: 26 % diésel 2/DB5; 20% electricidad, 11% gas distribuido, 11% leña, 10% gas licuado, 9% gasohol, 5% turbo, 2% carbón mineral, 1% petróleo industrial, 1% bagazo, 1% bosta & yareta, 1% gasolina motor, completando carbón vegetal y energía solar con porcentajes menores.

El consumo final de coque se redujo en 14.8 % respecto al 2016. Para el caso de la leña, la bosta y la yareta, su reducción se explica por su sustitución por el GLP en el sector residencial, en la cocción y calefacción, así como por la migración de la población proveniente de zonas rurales hacia zonas urbanas para el 2017.

Tabla 12: CONSUMO FINAL DE ENERGÍA POR FUENTES 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
<th>Participación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel B5</td>
<td>227 524</td>
<td>224 052</td>
<td>-2</td>
<td>26%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>164 279</td>
<td>167 191</td>
<td>1,8</td>
<td>20%</td>
</tr>
<tr>
<td>Leña</td>
<td>95 675</td>
<td>90 430</td>
<td>-5,5</td>
<td>11%</td>
</tr>
<tr>
<td>Gas Licuado</td>
<td>79 352</td>
<td>82 800</td>
<td>4,3</td>
<td>10%</td>
</tr>
<tr>
<td>Gasolina Motor *</td>
<td>11 699</td>
<td>12 461</td>
<td>6,5</td>
<td>1%</td>
</tr>
<tr>
<td>Gas Distribuido</td>
<td>81 455</td>
<td>89 551</td>
<td>9,9</td>
<td>11%</td>
</tr>
<tr>
<td>TurboJet</td>
<td>43 449</td>
<td>44 215</td>
<td>1,8</td>
<td>5%</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>23 286</td>
<td>19 899</td>
<td>-14,5</td>
<td>2%</td>
</tr>
<tr>
<td>No Energéticos</td>
<td>13 319</td>
<td>12 713</td>
<td>-4,6</td>
<td>1%</td>
</tr>
</tbody>
</table>
Balance Nacional de Energía 2017

ÁREA DE PLANEAMIENTO ENERGÉTICO/DGEE

1.4.2. Consumo Final por Sectores

En el año 2017, el consumo de energía del Sector Residencial, Comercial y Público fue de 213 344 TJ, el sector Industrial y Minero tuvo un consumo de 230 334 TJ y el sector Transporte consumió 378 042 TJ. El consumo de los sectores Agropecuario, Agroindustrial y Pesca, representan el 1.1 % del total. Finalmente, se resalta que el consumo de energía del Sector Transporte respecto al año anterior, aumentó en 1.9 % debido a un crecimiento del parque automotor, y el consumo energético en el sector Industria y Minería tuvo un incremento de 0.6 % respecto al 2016.

Tabla 13: CONSUMO FINAL TOTAL DE ENERGÍA POR SECTORES ECONÓMICOS 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte</td>
<td>370 878</td>
<td>378 042</td>
<td>1.9</td>
</tr>
<tr>
<td>Residencial, Comercial y Público</td>
<td>219 796</td>
<td>213 344</td>
<td>-2.9</td>
</tr>
<tr>
<td>Industria y Minería</td>
<td>228 871</td>
<td>230 334</td>
<td>0.6</td>
</tr>
<tr>
<td>Agropecuario y Pesca</td>
<td>9 483</td>
<td>9 299</td>
<td>-1.9</td>
</tr>
<tr>
<td>No Energético</td>
<td>13 319</td>
<td>15 305</td>
<td>14.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>842 347</td>
<td>846 324</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
1.5. MATRIZ Y FLUJO DE ENERGÍA

1.5.1. Matriz del Balance Nacional

<table>
<thead>
<tr>
<th>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA</th>
<th>ENERGÍA PRIMARIA</th>
<th>ENERGÍA SECUNDARIA</th>
<th>TOTAL ENERGÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energía Primaaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petróleo y Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leña</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minero</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesquería</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agropecuario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energía Promeiaaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eléctrica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petróleo y Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leña</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minero</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesquería</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agropecuario</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energía Promeiaaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eléctrica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 14: MATRIZ ENERGÉTICA NACIONAL 2017 (UNIDAD: TJ)

<table>
<thead>
<tr>
<th></th>
<th>Energía Primaria</th>
<th>Energía Secundaria</th>
<th>Total Energía</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carotín Vegetal</td>
<td>Carotín Vegetal</td>
<td>Carotín Vegetal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
1.5.2. **Diagramas de Flujos de Energía**

Ilustración 2: DIAGRAMA DE FLUJO SECTOR HIDROCARBUROS LÍQUIDOS AÑO 2017 (UNIDAD: TJ)

Fuente: Elaboración Propia

Ilustración 3: DIAGRAMA DE FLUJO SECTOR ELECTRICO AÑO 2017 (UNIDAD: TJ)

Fuente: Elaboración Propia
METODOLOGÍA GENERAL DEL BALANCE ENERGÉTICO
II. METODOLOGÍA GENERAL DEL BALANCE ENERGÉTICO

Para poder expresar las relaciones que se ponen de manifiesto en un balance energético es indispensable establecer una estructura lo suficientemente general para obtener una adecuada configuración de las variables físicas propias del sector energético.

2.1. ESTRUCTURA GENERAL

2.1.1. Fuentes de energía primaria

Son aquellas energías provistas, por la naturaleza en forma directa como la hidroenergía, el petróleo crudo, el gas natural, el carbón mineral, leña, residuos vegetales y animales, etc.

Columna 1 a 10. Fuentes de Energía Primaria - Carbón mineral, leña, bosta y yareta, bagazo, petróleo crudo, líquidos de gas natural, gas natural, hidroenergía, energía solar y energía eólica.

Columna 11. Total Energía Primaria - Suma de las columnas 1 a 10.

2.1.2. Fuentes de energía secundaria

Son los productos y formas de energía resultantes de los diferentes centros de transformación y tiene como destino los diversos sectores de consumo y eventualmente otro centro de transformación.

Columnas 12 a 30. Productos y formas de energía secundaria – coque, biogas, carbón vegetal, gas licuado de petróleo, gasolina, gasohol, etanol, turbo, diésel oil, diésel B5, biodiesel B100, petróleo industrial, productos no energéticos, otros productos energéticos del petróleo, gas distribuido, gas de refinería, gases industriales y energía eléctrica.

Columna 31. Total Energía Secundaria - Suma de las columnas 12 a 30.

2.1.3. Total

Consolida todas las energías producidas, transformadas y consumidas en el país.

Columna 32. Total - Suma algebraica de las Columnas 11 y 31.

2.1.4. Oferta

Cantidad de energía que se destina a la transformación y/o para el consumo final.

Fila 1. Producción - Energía primaria y secundaria que se obtiene de los recursos minerales, vegetales, animales e hídricos. Tiene signo positivo.

Fila 2. Importación - Cantidad de energía primaria y secundaria que ingresa al país proveniente del exterior y constituye parte de la oferta en el balance. Tiene signo positivo.

Fila 3. Variación de Inventarios - Es la diferencia de la existencia inicial y final para cada forma de energía. Un aumento del almacenamiento de energía en un año determinado significa una reducción en la oferta total y por lo tanto debe caracterizarse con signo negativo y viceversa.
Fila 4 Oferta Total - Es la cantidad de energía teóricamente disponible para ser consumida por el país. Es la suma algebraica de las filas 1 a 3.

Fila 5 Exportación - Es la cantidad de energía primaria y secundaria que se envía al exterior. Se identifica con signo negativo.

Fila 6 No Aprovechada - Es la cantidad de energía que por la naturaleza técnica y/o económica de una explotación, actualmente no está siendo utilizada.

Fila 7 Transferencias - Las transferencias son adiciones o sustracciones que se realizan de la oferta interna de un producto.

Fila 8 Oferta Interna Bruta - Es la cantidad de energía primaria y secundaria que se pone a disposición del país para ser sometida a los procesos de transformación, distribución y consumo. Es la suma algebraica de las filas 4, 5, 6 y 7.

2.1.5. **Transformación, pérdidas y consumo propio**

El sector transformador agrupa a todos los centros de transformación donde las energías primarias y/o secundarias son sometidas a procesos que modifican sus propiedades o naturaleza original.

Fila 9 Total Transformación - Las cantidades colocadas en esta fila de la columna de 1 a 8 y de 10 a 27, representan la suma algebraica de energía primaria y secundaria que entra y sale del conjunto de los centros de transformación.

Se calcula como la suma algebraica de los valores de las filas 9.1 a 9.6.

Fila 9.1 a 9.6 Centros de Transformación - Coqueras, altos hornos, carboneras, refinerías, plantas de gas, centrales eléctricas que generan para el mercado eléctrico y centrales eléctricas que generan para uso propio.

Fila 10 Consumo Propio del Sector Energético - Es la cantidad de energía utilizada para la producción, transformación, transporte y distribución de la energía.

Fila 11 Pérdidas (Transporte, Distribución y Almacenamiento) - Son aquellos que ocurren durante las actividades que se realizan para suministrar energía, desde la producción hasta el consumo final.

2.1.6. **Ajustes estadísticos**

Herramientas utilizadas para hacer compatibles los datos correspondientes a la oferta y consumo de energía, proveniente de fuentes estadísticas diferentes.

Fila 12 Ajustes - En esta fila se cuantifican los déficit o ganancias aparentes de cada energía, producto de errores estadísticos, información o medida.

Los ajustes para cada columna (1 a 31) se calculan con la siguiente fórmula:

\[(+/-) \text{AJUSTES} \times \text{Consumo Final} - \text{Oferta Interna Bruta} - \text{Total Transformación} - \text{Consumo Propio} \]

Pérdida de Transformación Distribución y Almacenamiento

El ajuste es negativo, si la oferta es mayor que el consumo y viceversa.
2.1.7. Consumo final
En esta parte se detallan los diferentes sectores de la actividad socioeconómica del país, en donde converge la energía primaria y secundaria y conforman el consumo final de energía.

Fila 13 Consumo Final Total - Es la energía que se encuentra disponible para ser usada por todos los sectores de consumo final en el país, incluyendo aquellos volúmenes utilizados con fines no energéticos. Corresponden a la suma de las filas 13.1 y 13.2.

Fila 13.1 Consumo Final No Energético - Son las cantidades de energía contenidas en los productos que son utilizados en diferentes sectores, para fines no energéticos.

Fila 13.2 Consumo Final Energético - Agrupa el consumo final de los sectores: residencial y comercial, público, transporte, agropecuario y agroindustry, pesquería, minero - metalúrgico e industrial.

2.1.8.Producción de energía secundaria
Esta fila adicional permite leer directamente la cantidad de energía secundaria producida en los centros de transformación y es igual a la suma de los valores positivos que aparecen desde la fila 8.1 a 8.6.

2.2. CONVERSIÓN DE SIGNOS

En la parte referente al sector energético (Ver matriz), toda cantidad de energía que tienda a aumentar la energía disponible en el país es:

POSITIVA: Producción, importación, disminución de inventarios, salida de los centros de transformación.

NEGATIVA: aumento de inventarios, exportación, energía no aprovechada, energía transformada, consumo propio y pérdidas de transporte y distribución.

Finalmente, todos los datos que se encuentran en la parte referente al consumo final de energía son también negativos, pero por motivos de simplificación no se presentan como cantidad aritmética (sin signo).

2.3. OPERACIONES BÁSICAS DE LA MATRIZ

2.3.1. Energía primaria y secundaria.

El flujo energético de cada fuente primaria y producto o forma secundaria de energía está expresado por las siguientes ecuaciones:

Oferta Total = Producción (+) Importación (+) o (-) Variación de Inventarios

Oferta Interna Bruta = Oferta Total (+) Exportación (-) Energía No Aprovechable

Oferta Interna Bruta = Total Transformación (+) Consumo Final (+) Consumo Propio (+) Pérdida e Transporte y Distribución (+) o (-) Ajustes
Debe ser observado que la producción de energía secundaria aparece en el cuadrante relativo a los centros de transformación, a fin de evitar su duplicación, no se presenta en la fila correspondiente a la producción de energía primaria, pero sí se hace en la fila que aparece en la parte superior de la matriz. De esta forma, para la energía secundaria las operaciones anteriormente descritas no se cumplen en la matriz, sin embargo, son válidas cuando se estudia aisladamente las fuentes.

2.3.2. **Transformación**

Esta parte es constituida por los centros de transformación y se cumple la siguiente relación: Producción

Energía Secundaria = Transformación Primaria (+) Transformación Secundaria (-)

Pérdidas de Transformación

2.3.3. **Consumo final de energía**

Consumo Total = Consumo Final Primario (+) Consumo Final Secundario

Consumo Final = Consumo Final No Energético (+) Consumo Final Energético
III. ENERGÍA PRIMARIA

3.1. RESERVAS

Las reservas probadas de energía comercial al 31 de diciembre de 2017 fueron aproximadamente 29 313 876 TJ, registrándose un ligero decrecimiento de las reservas de 0.23% con respecto a lo reportado en el 2016, debido a la disminución de las reservas de carbón mineral según lo reportado por la Dirección General de Minería del Ministerio de Energía y Minas.

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>RESERVAS PROBADAS</th>
<th>ESTRUCTURA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Natural</td>
<td>15 753 973</td>
<td>54</td>
</tr>
<tr>
<td>Hidroenergia</td>
<td>5 965 666</td>
<td>20</td>
</tr>
<tr>
<td>Líquidos del Gas Natural</td>
<td>4 179 789</td>
<td>14</td>
</tr>
<tr>
<td>Petróleo Crudo</td>
<td>2 518 249</td>
<td>9</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>151 218</td>
<td>1</td>
</tr>
<tr>
<td>Uranio</td>
<td>744 981</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>29 313 876</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Hasta el cierre del presente documento, no se reportaron variaciones en la reserva de los energéticos con excepción de lo mencionado para el carbón mineral, por lo cual se reportan los mismos valores que en el 2016. En ese sentido, las reservas probadas de petróleo crudo a fines de 2017, fueron del orden de los 69,1 x 10^6 m³ (434,9 x 10^6 Bbl), similares a los valores del 2016.

Las reservas probadas de gas natural a diciembre de 2017 representan el mayor porcentaje en términos energéticos (54 %), alcanzando los 455,6 x 10^9 m³ (16,09 TCF) y reservas probadas de líquidos de gas natural fueron del orden de 125,6 x 10^6 m³ (789,7 x 10^6 Bbl), manteniéndose los valores del 2016.

Las reservas probadas hidroenergéticas de esta fuente renovable de energía se miden considerando la energía media anual a producirse durante 50 años en las centrales eléctricas instaladas, en construcción y en proyecto. La evaluación de estas reservas está basada en la Evaluación del Potencial Hidroeléctrico Nacional, realizado con el apoyo de la Sociedad Alemana de Cooperación Técnica (GTZ), el Banco Internacional de Reconstrucción y Fomento (BIRF) y el Consorcio Lahmeyer - Salzgitter (LIS) en el año 1978; dado que hasta la fecha no se ha realizado otro similar. No obstante, dicho potencial ha sido actualizado parcialmente a partir de estudios que el MINEM ha desarrollado recientemente con fondos de la CAF y del gobierno canadiense, no obstante dado que aún no se ha completado la actualización del potencial de todas las cuencas se mantienen las cifras obtenidas en el estudio de la GTZ.
Las reservas probadas de carbón mineral a fines de 2017, fueron cercanas a 5,095 x 10^6 ton, correspondiendo un 98,7 % a carbón de tipo antracita y 1,3 % corresponde a carbón bituminoso. Las Regiones La Libertad, Ancash y Lima son las que poseen las mayores reservas de carbón mineral, del total nacional.

Sobre las reservas probadas de uranio, estas siguen siendo del orden de 1 800 ton y están localizadas en la parte nor-occidental del área de distribución de los volcánicos de la formación Quenamari, distrito de Corani, provincia de Carabaya, Región Puno. Tales reservas fueron obtenidas mediante el “prospecto uranífero Chapi” entre 1984 – 1986 y confirmadas mediante el inventario de reservas probadas de 1989, tomando en consideracion el estudio realizado en el año 2007 por el Instituto Geológico Minero y Metalúrgico (INGEMMET), donde se estima el potencial uranífero para todo el Perú en base a la recopilación de mucha información geológica, después del cual no se han realizado más actividades exploratorias. No obstante ello, en los últimos años ha habido un marcado interés de parte de empresas privadas en invertir en exploración de nuevos yacimientos de uranio especialmente en la zona sur del país.

Ilustración 4: RESERVAS PROBADAS DE ENERGÍA COMERCIAL: 2017

TOTAL: 29 313 876 TJ

Fuente: Elaboración Propia

3.2. PRODUCCIÓN DE ENERGÍA PRIMARIA

En el año 2017, la producción de energía primaria fue de 1 041 065 TJ la cual es menor en 1.3% al año 2016. La caída de producción de energía primaria se debió a la caída en la producción tanto de gas natural y líquidos en gas natural como de leña, en un 5,3% y 5,4% respectivamente. Asimismo, durante el 2017, la producción de Hidroenergía presentó un gran aumento, 20,3%, seguido por el aumento de producción de petróleo crudo, 7,6%.
En términos de energía, el Gas Natural es la fuente energética de mayor producción representando un 65,4% de la producción de energía, seguido por la hidroenergía con un 12,6%.

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Natural + LGN (*)</td>
<td>719 321</td>
<td>681 077</td>
<td>-5,3</td>
</tr>
<tr>
<td>Petróleo Crudo</td>
<td>85 545</td>
<td>92 073</td>
<td>7,6</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>108 709</td>
<td>130 771</td>
<td>20,3</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>7 343</td>
<td>8 308</td>
<td>13,1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>920 918</td>
<td>912 230</td>
<td>-0,9</td>
</tr>
<tr>
<td>Energía No Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leña</td>
<td>107 231</td>
<td>101 387</td>
<td>-5,4</td>
</tr>
<tr>
<td>Bagazo</td>
<td>18 248</td>
<td>19 609</td>
<td>7,5</td>
</tr>
<tr>
<td>Bosta & Yareta</td>
<td>5 967</td>
<td>5 269</td>
<td>-11,7</td>
</tr>
<tr>
<td>Energía Solar (**)</td>
<td>2 258</td>
<td>2 569</td>
<td>13,8</td>
</tr>
<tr>
<td>Subtotal</td>
<td>133 703</td>
<td>128 835</td>
<td>-3,6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 054 622</td>
<td>1 041 065</td>
<td>-1,3</td>
</tr>
</tbody>
</table>

(*) Producción fiscalizada
(**) Estimado
Fuente: Elaboración Propia

Ilustración 5: PARTICIPACIÓN DE PRODUCCIÓN INTERNA DE ENERGÍA PRIMARIA 2017

TOTAL: 1 041 065 TJ

(*) Producción fiscalizada
(**) Estimado
Fuente: Elaboración Propia
La producción de energía comercial registrada en el año 2017 fue 912 230 TJ lo cual es una ligera caída con respecto a la registrada en el 2016, siendo la producción de gas natural y sus líquidos la predominante con el 74,7 % del total de energía primaria comercial, seguido de la producción de energía de origen hidroeléctrico que representó el 14,3 % de la producción total.

Tabla 17: PRODUCCIÓN Y RESERVAS DE ENERGÍA COMERCIAL 2017 (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>PRODUCCIÓN</th>
<th>RESERVAS</th>
<th>ESTRUCTURAS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRODUCCIÓN</td>
<td>RESERVAS</td>
<td>PRODUCCIÓN</td>
</tr>
<tr>
<td>Gas Natural + LGN</td>
<td>681 077</td>
<td>19 933 761</td>
<td>74,7</td>
</tr>
<tr>
<td>Petróleo Crudo</td>
<td>92 073</td>
<td>2 518 249</td>
<td>10,1</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>130 771</td>
<td>5 965 666</td>
<td>14,3</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>8 308</td>
<td>151 218</td>
<td>0,9</td>
</tr>
<tr>
<td>Uranio</td>
<td>0</td>
<td>744 981</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>912 230</td>
<td>29 313 876</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia.

3.3. IMPORTACIÓN DE ENERGÍA PRIMARIA

Las fuentes de energía primaria que son importados y exportados son el petróleo crudo y el carbón vegetal.

La importación de energía primaria durante el año 2017 fue 279 218 TJ lo que representó un incremento de 15,98% con respecto a lo importado en el 2016. El petróleo crudo representó el 94,9 % de lo importado y el carbón mineral el resto.

3.4. EXPORTACIÓN DE ENERGÍA PRIMARIA

Durante el año 2017, se exportaron 13 665 TJ de energía primaria lo que representa un aumento del 40,5 % con respecto al año pasado. En las exportaciones, el carbón mineral tuvo una participación del 75,7%, mientras que el restante fue petróleo crudo.

Tabla 18: BALANZA COMERCIAL DE ENERGÍA PRIMARIA 2017 (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>IMPORTACIONES</th>
<th>EXPORTACIONES</th>
<th>SALDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo Crudo</td>
<td>264 841</td>
<td>3 316</td>
<td>(261 528)</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>14 371</td>
<td>10 349</td>
<td>(4 022)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>279 213</td>
<td>13 665</td>
<td>- 265 548</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
3.5. ENERGÍA PRIMARIA NO APROVECHADA

El gas natural no aprovechado es de 241 155,2 TJ (5 478 x10⁶ m³). Este gas es principalmente reinyectado, 75,4 %. Los otros consumos no aprovechados de gas natural son gas venteado, gas quemado, gas de condensado y reposición y en linepack.

3.6. OFERTA INTERNA BRUTA DE ENERGÍA PRIMARIA

La oferta interna bruta de energía primaria considera de forma agregada a la producción total, la variación de inventarios y las importaciones; descontando la energía no aprovechada y las exportaciones.

En el año 2017, la oferta interna bruta de energía primaria fue de 1 320 828 TJ cifra superior en 1,6 % respecto al año anterior. La energía comercial representó el 90,2% del total de la oferta interna bruta, tal como se aprecia en la Tabla 19. En dicho cuadro se aprecia que en el 2017 hubo un descenso en la Oferta Interna del gas natural (incluido los líquidos), en 5,3% con respecto del año anterior.

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Natural + LGN</td>
<td>719 321</td>
<td>681 077</td>
<td>-5,3</td>
</tr>
<tr>
<td>Petróleo Crudo</td>
<td>304 122</td>
<td>350 874</td>
<td>15,4</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>108 709</td>
<td>130 771</td>
<td>20,3</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>33 693</td>
<td>29 264</td>
<td>-13,1</td>
</tr>
<tr>
<td>Subtotal</td>
<td>1 165 845</td>
<td>1 191 987</td>
<td>2,2</td>
</tr>
<tr>
<td>Energía No Comercial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leña</td>
<td>107 231</td>
<td>101 387</td>
<td>-5,4</td>
</tr>
<tr>
<td>Bagazo</td>
<td>18 248</td>
<td>19 609</td>
<td>7,5</td>
</tr>
<tr>
<td>Bosta & Yareta</td>
<td>5 958</td>
<td>5 269</td>
<td>-11,6</td>
</tr>
<tr>
<td>Energía Solar</td>
<td>2 258</td>
<td>2 569</td>
<td>13,8</td>
</tr>
<tr>
<td>Subtotal</td>
<td>133 695</td>
<td>128 835</td>
<td>-3,6</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 299 539</td>
<td>1 320 828</td>
<td>1,6</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

La oferta interna bruta de energía primaria tiene dos destinos: los centros de transformación y el consumo directo.
IV
CENTROS DE TRANSFORMACIÓN
IV. CENTROS DE TRANSFORMACIÓN

4.1. CENTRALES ELÉCTRICAS

Las centrales eléctricas transformaron 159 494 TJ (82 % hidroenergía, 9 % bagazo, 6 % carbón mineral y el resto es eólico y solar), 90,1 % se transformó en plantas de generación para el mercado eléctrico y el 9,9% restante en plantas de generación para uso propio.

Tabla 20: DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LAS CENTRALES ELÉCTRICAS 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>DESTINO</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrales Eléctricas</td>
<td>133 272</td>
<td>159 494</td>
<td>19,7</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>108 709</td>
<td>130 771</td>
<td>20,3</td>
</tr>
<tr>
<td>Bagazo</td>
<td>7 344</td>
<td>14 308</td>
<td>94,8</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>12 524</td>
<td>9 366</td>
<td>-25,2</td>
</tr>
<tr>
<td>Solar</td>
<td>867</td>
<td>1 186</td>
<td>36,8</td>
</tr>
<tr>
<td>Eólica</td>
<td>3 828</td>
<td>3 862</td>
<td>0,9</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

4.2. REFINERÍAS DE PETRÓLEO

Las refinerías procesaron 356 426 TJ representando el 30 % del total de la energía primaria destinada a centros de transformación.

Tabla 21: DISTRIBUCIÓN DE LA ENERGÍA PRIMARIA DESTINADA A LAS REFINERÍAS: 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>DESTINO</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinerías</td>
<td>304 122</td>
<td>356 426</td>
<td>17,2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

4.3. PLANTAS DE PROCESAMIENTO DE GAS NATURAL

En el 2017, las plantas de procesamiento de gas natural procesaron 681 081 TJ lo que fue 56 % del total de energía primaria destinada a centros de transformación.
<table>
<thead>
<tr>
<th>DESTINO</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planta de Gas</td>
<td>719 321</td>
<td>681 081</td>
<td>-5,3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

4.4. CARBONERAS

Al igual que en el año 2016, en el 2017 no se produjo coque a partir de carbón mineral. Por otro lado, se utilizó 10 956 TJ de leña para la producción de carbón vegetal.

<table>
<thead>
<tr>
<th>DESTINO</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboneras</td>
<td>11 521</td>
<td>10 956</td>
<td>-4,9</td>
</tr>
<tr>
<td>Leña</td>
<td>11 521</td>
<td>10 956</td>
<td>-4,9</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

4.5. COQUERÍAS Y ALTOS HORNOS

Al igual que en el año 2016, en el 2017 no se produjo coque a partir de carbón mineral.
ENERGÍA SECUNDARIA
V. ENERGÍA SECUNDARIA

5.1. PRODUCCIÓN DE ENERGÍA SECUNDARIA

La producción de energía secundaria bruta durante el año 2017 fue de 1 150 842 TJ, lo cual representa una disminución de 9.3 % con respecto al año 2016. En la estructura continúan predominando los hidrocarburos obtenidos de las refinerías y plantas de gas, que participan con el 83.1 % del total producido. La energía eléctrica proveniente de las centrales hidroeléctricas y de las térmicas (a gas natural, diésel B5, petróleo industrial y carbón mineral) participan con el 16.5 % y lo restante corresponde a la participación de carbón vegetal. Cabe señalar que la producción de energía secundaria bruta considera la producción de energéticos (hidrocarburos) utilizados para la producción de energía secundaria (electricidad).

Tabla 24: PRODUCCIÓN DE ENERGÍA SECUNDARIA 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrocarburos</td>
<td>1 077 855</td>
<td>956 679</td>
<td>-11</td>
</tr>
<tr>
<td>Electricidad</td>
<td>185 865</td>
<td>189 780</td>
<td>2</td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>4 608</td>
<td>4 383</td>
<td>-4.9</td>
</tr>
<tr>
<td>Derivados del Carbón</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 268 328</td>
<td>1 150 842</td>
<td>-9.3</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Ilustración 6: PRODUCCIÓN DE ENERGÍA SECUNDARIA 2017

TOTAL: 1 150 842 TJ

Fuente: Elaboración Propia
5.2. IMPORTACIÓN DE ENERGÍA SECUNDARIA

En el 2017, se realizaron más exportaciones de energía secundaria que importaciones. El principal energético importado fue el Diésel B5 con 157 705 TJ, seguido por la gasolina y el Turbo con 39 697 TJ y 19 225 TJ respectivamente.

5.3. EXPORTACIÓN DE ENERGÍA SECUNDARIA

En el 2017, la principal exportación de energía secundaria fue el gas natural seco con 229 363 TJ, seguido por el fuel oil y la gasolina motor de 103 563 y 101 892 TJ respectivamente.

Tabla 25: BALANZA COMERCIAL DE ENERGÍA SECUNDARIA 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>IMPORTACIONES</th>
<th>EXPORTACIONES</th>
<th>SALDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coque</td>
<td>1 744</td>
<td>-</td>
<td>1 744</td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>10</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Gas Licuado</td>
<td>9 903</td>
<td>2 417</td>
<td>7 487</td>
</tr>
<tr>
<td>Etanol</td>
<td>2 866</td>
<td>-</td>
<td>2866</td>
</tr>
<tr>
<td>Gasohol</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gasolina Motor</td>
<td>39 697</td>
<td>101 892</td>
<td>-62 195</td>
</tr>
<tr>
<td>Turbo</td>
<td>19 225</td>
<td>28 825</td>
<td>-9 600</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>10 567</td>
<td>-</td>
<td>10 567</td>
</tr>
<tr>
<td>Diesel B5</td>
<td>157 705</td>
<td>22 277</td>
<td>135 428</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>922</td>
<td>103 563</td>
<td>-102 641</td>
</tr>
<tr>
<td>Gas Seco</td>
<td>-</td>
<td>229 363</td>
<td>-229 363</td>
</tr>
<tr>
<td>No Energético Petróleo y Gas</td>
<td>7 660</td>
<td>404</td>
<td>7 257</td>
</tr>
<tr>
<td>TOTAL</td>
<td>250 299</td>
<td>488 740</td>
<td>-228 480</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

5.4. OFERTA FINAL DE ENERGÍA SECUNDARIA

En el Balance de Energía Neta, se denomina “CONSUMO FINAL DE ENERGÍA” a la oferta de energía disponible al usuario final. Es decir, el resultado de descontar a la producción de energía secundaria, el consumo en operaciones propias y las pérdidas de transmisión, distribución y almacenamiento.
En el año 2017, el consumo final de energía secundaria fue de 711 330 TJ, cifra que aumentó en 2,2% respecto al año anterior. La estructura continuó caracterizándose por tener un alto contenido de hidrocarburos, tal como se aprecia en la ilustración 7.

Tabla 26: CONSUMO FINAL DE ENERGÍA SECUNDARIA 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrocarburos</td>
<td>524 771</td>
<td>537 635</td>
<td>2,5</td>
</tr>
<tr>
<td>Electricidad</td>
<td>164 279</td>
<td>167 191</td>
<td>1,8</td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>4 616</td>
<td>4 393</td>
<td>-4,8</td>
</tr>
<tr>
<td>Derivados del Carbón</td>
<td>2 478</td>
<td>2 111</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td>696 144</td>
<td>711 330</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Ilustración 7: CONSUMO FINAL DE ENERGÍA SECUNDARIA 2017

TOTAL: 711 330 TJ

Fuente: Elaboración Propia
VI
CONSUMO FINAL DE ENERGÍA
VI. CONSUMO FINAL DE ENERGÍA

En la presente versión del BNE se procedió a actualizar los modelo de estimación de la demanda de energía final utilizados en la determinación del consumo de Biomasa (Leña, Carbón Vegetal y Bosta & Yareta) así como en la determinación del consumo de hidrocarburos líquidos (GLP, gasohol, gasolina motor, turbo, diésel B5, petróleo industrial) por sectores. Asimismo, se procedió a reconstruir los consumos de energía históricos en función a la actualización de dichos modelos de demanda a fin de contar con información histórica coherente y robusta.

De otro lado, para determinar el consumo de dichos energéticos en los sectores restantes, se utilizó la información de consumo total del BNEU 2013 a nivel sectorial así como las tasas de crecimientos macroeconómicas de los sectores analizados con la finalidad de determinar su comportamiento en el tiempo. De otro lado, para el caso del consumo de la Bosta & Yareta, el modelo determina una relación exógena a partir del número de hogares que consumen Leña, los departamentos donde se consumen Bosta & Yareta y un consumo específico de este energético, tomando como referencia la información de BNEU 98 y 2013.

De otro lado, para la estimación del consumo sectorial de los Combustibles Líquidos, se tomó como referencia la información disponible del BNEU 1998 y 2013, cabe precisar que primero se estandarizó las actividades consideradas en cada sector según el CIUU Rev. 4. Asimismo, se utilizó un set de variables macroeconómicas a nivel sectorial así como las elasticidades de precio e ingreso, ya sean informadas y/o calculadas, a fin de determinar el comportamiento teórico de la demanda de combustibles. Cabe señalar que las variables utilizadas fueron elegidas en base a un marco teórico sólido derivado del análisis económico, en particular, se utilizaron los precios reales de los energéticos (ajustados por IPC a 2007) así como los ingresos y PBI sectoriales (PBI real a 2007). En consecuencia, utilizando el método de aproximación lineal a partir de una especificación de demanda del tipo isoelastica log-linealizada se procedió a estimar una tasa de crecimiento anual para cada año del horizonte de análisis (2000-2017). Finalmente, se aplicaron factores de calibración a partir de la Matriz Insumo Producto del 2007 y factores de ajuste con la finalidad de lograr el equilibrio oferta y demanda para cada energético a nivel nacional.
Con respecto al consumo total de las fuentes energéticas, se puede hacer una diferenciación importante puesto que la información del consumo nacional de hidrocarburos se obtiene a partir de las ventas de las empresas, que se registran en OSINERGMIN y la Dirección General de Hidrocarburos, mientras que la información del consumo nacional y sectorial de electricidad se obtiene a partir de las ventas de las empresas eléctricas y se registran en la Dirección General de Electricidad.

Para el caso de la energía solar, se hizo una actualización de los modelos para estimar la capacidad instalada en sistemas solares térmicos y sistemas fotovoltaicos, introduciendo variables tales como: cantidad de paneles fotovoltaicos y termas solares importadas durante el año de estudio y sus respectivas capacidades; dicha información fue extraída del portal web de ADUANAS. Se mantuvo la proporción del consumo de energía solar por sectores económicos igual a los años anteriores.

La información de consumo energético se complementa con información puntual solicitada a empresas mineras, industriales y petroleras.
6.1. CONSUMO FINAL POR FUENTE

En el año 2017, el consumo final total de energía fue 846 3241 TJ, superior en 0,5 % con respecto al año anterior. La estructura del consumo final de energía, estuvo conformada de la siguiente manera: 26 % diésel 2/DB5; 20% electricidad, 11% gas distribuido, 11% leña, 10% gas licuado, 9% gasohol, 5% turbo, 2% carbón mineral, 1% petróleo industrial, 1% bagazo, 1% bosta & yareta, 1% gasolina motor, completando carbón vegetal y energía solar con porcentajes menores.

El consumo final de coque se redujo en 14.8 % respecto al 2016. Para el caso de la leña, la bosta y la yareta, su reducción se explica por su sustitución por el GLP en el sector residencial, en la cocción y calefacción, así como por la migración de la población proveniente de zonas rurales hacia zonas urbanas para el 2017.

<table>
<thead>
<tr>
<th>FUENTE</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
<th>Participación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel B5</td>
<td>227 524</td>
<td>224 052</td>
<td>-2</td>
<td>26%</td>
</tr>
<tr>
<td>Electricidad</td>
<td>164 279</td>
<td>167 191</td>
<td>1.8</td>
<td>20%</td>
</tr>
<tr>
<td>Leña</td>
<td>95 675</td>
<td>90 430</td>
<td>-5.5</td>
<td>11%</td>
</tr>
<tr>
<td>Gas Licuado</td>
<td>79 352</td>
<td>82 800</td>
<td>4.3</td>
<td>10%</td>
</tr>
<tr>
<td>Gasolina Motor *</td>
<td>11 699</td>
<td>12 461</td>
<td>6.5</td>
<td>1%</td>
</tr>
<tr>
<td>Gas Distribuido</td>
<td>81 455</td>
<td>89 551</td>
<td>9.9</td>
<td>11%</td>
</tr>
<tr>
<td>TurboJet</td>
<td>43 449</td>
<td>44 215</td>
<td>1.8</td>
<td>5%</td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>23 286</td>
<td>19 899</td>
<td>-14.5</td>
<td>2%</td>
</tr>
<tr>
<td>No Energéticos</td>
<td>13 319</td>
<td>12 713</td>
<td>-4.6</td>
<td>1%</td>
</tr>
<tr>
<td>Petróleo Industrial</td>
<td>9 310</td>
<td>10 069</td>
<td>8.1</td>
<td>1%</td>
</tr>
<tr>
<td>Bosta & Yareta</td>
<td>5 967</td>
<td>5 269</td>
<td>-11.7</td>
<td>1%</td>
</tr>
<tr>
<td>Bagazo</td>
<td>6 575</td>
<td>5 301</td>
<td>-19.4</td>
<td>1%</td>
</tr>
<tr>
<td>Gasohol</td>
<td>71 982</td>
<td>74 488</td>
<td>3.5</td>
<td>9%</td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>4 616</td>
<td>4 393</td>
<td>-4.8</td>
<td>1%</td>
</tr>
<tr>
<td>Coque</td>
<td>2 478</td>
<td>2 111</td>
<td>-14.8</td>
<td>0%</td>
</tr>
<tr>
<td>Energía Solar</td>
<td>1 383</td>
<td>1 382</td>
<td>0.0</td>
<td>0%</td>
</tr>
<tr>
<td>Gas Industrial</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>842 347</td>
<td>846 324</td>
<td>0.5</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
6.2. CONSUMO FINAL POR SECTORES

En el año 2017, el sector Transporte fue el sector de mayor consumo con 378 042 TJ (45 % del consumo total), seguido del Sector Industrial y Minero (27% del consumo total) y del Sector Residencial, Comercial y Público (25% del consumo total). El consumo de los sectores Agropecuario y Pesca, representan el 1% del total. Finalmente, se resalta que el consumo de energía del Sector Transporte respecto al año anterior aumentó en 1.9% impulsado por el crecimiento del parque automotor, mientras que el consumo energético en el sector Industria y Minería tuvo un incremento de 0.6% respecto al 2016. El consumo del rubro no energético comprende a los derivados no energéticos del petróleo crudo y gas natural (aceites lubricantes, solventes, etc.) y a la utilización del bagazo para fines no energéticos, principalmente, como tableros aglomerados.

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transporte</td>
<td>370 878</td>
<td>378 042</td>
<td>1.9</td>
</tr>
<tr>
<td>Residencial, Comercial y Público</td>
<td>219 796</td>
<td>213 344</td>
<td>-2.9</td>
</tr>
<tr>
<td>Industria y Minería</td>
<td>228 871</td>
<td>230 334</td>
<td>0.6</td>
</tr>
<tr>
<td>Agropecuario y Pesca</td>
<td>9 483</td>
<td>9 299</td>
<td>-1.9</td>
</tr>
<tr>
<td>No Energético</td>
<td>13 319</td>
<td>15 305</td>
<td>14.9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>842 347</td>
<td>846 324</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
6.3. EVOLUCIÓN DEL CONSUMO FINAL DE ENERGÍA POR FUENTES

El consumo de energía se ha caracterizado a través de los años por el predominio de los hidrocarburos líquidos; sin embargo, durante los últimos años, estos vienen siendo sustituidos por el gas natural, por otro lado, se puede notar que en los últimos años se ha incrementado el consumo de electricidad a nivel nacional. Cabe precisar que en este Balance se ha modificado la metodología de cálculo del consumo de electricidad en los diferentes sectores económicos, en anteriores Balances se estimaba a partir de las encuestas del Balance Nacional de Energía Útil de 1998, utilizando modelos socioeconómicos, ahora se obtiene a partir de los reportes que las empresas eléctricas y empresas auto productoras envían a la Dirección General de Electricidad.

Para el caso de la leña, que es un energético que se consume en gran cantidad, sobre todo en zonas rurales, su consumo muestra una tendencia decreciente. Asimismo, respecto al kerosene, desde la prohibición de su comercialización a nivel nacional, los consumidores de este energético pasaron a usar GLP; sin embargo, en las zonas rurales se volvió a utilizar leña para la cocción. Actualmente, debido a la migración de la población proveniente de zonas rurales hacia zonas urbanas y por su sustitución por el GLP en el sector residencial, se observa una ligera reducción en el consumo de leña para el 2017. Esto se puede apreciar en las siguientes ilustraciones.
Ilustración 10: CONSUMO FINAL DE ENERGÍA PRIMARIA – NACIONAL
(UNIDAD: TJ)

Fuente: Elaboración Propia

Ilustración 11: CONSUMO FINAL DE ENERGÍA SECUNDARIA – NACIONAL
(UNIDAD: TJ)

Fuente: Elaboración Propia

ÁREA DE PLANEAMIENTO ENERGÉTICO/DGEE
47
Durante el periodo 2000 – 2017, el consumo final de energía creció a una tasa de crecimiento anualizada de 3.1 % y el Producto Bruto Interno en 5.1 %. Asimismo, para el 2017, la tasa de crecimiento del consumo final de energía y PBI fue de 0.9 % y 2.5 %, respectivamente, mientras la elasticidad Consumo Final de Energía - PBI fue de 0.36.

Fuente: Elaboración Propia
Ilustración 14: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA - NACIONAL

Fuente: Elaboración Propia

Ilustración 15: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA - NACIONAL

Fuente: Elaboración Propia
6.4. EVOLUCIÓN DEL CONSUMO FINAL DE ENERGÍA POR SECTORES

6.4.1. Residencial

Durante el 2017, el consumo de energía en el sector residencial disminuyó en 2,5 % en comparación con el 2016, esto debido a un menor consumo de leña, la cual continua predominando en la estructura de consumo con una participación cercana al 46,8%, siendo utilizada principalmente en cocción.

Por otro lado, se observa un crecimiento del consumo de GLP, gas natural y la electricidad en este sector. Las demandas de electricidad y GLP tienen una participación en este sector de 21,8 % y 23,6 % respectivamente, mientras que no hay consumo de kerosene a partir de la prohibición de la venta del kerosene mediante el Decreto Supremo Nº 045-2009-EM (mediante Decreto Supremo Nº 025-2010-EM se amplió hasta el 2010, el plazo de comercialización de kerosene en algunos departamentos).

Finalmente, a pesar del incremento en el consumo del gas natural en este sector, su participación en el sector aún es incipiente.

Fuente: Elaboración Propia
Ilustración 17: CONSUMO DE ENERGÍA SECTOR RESIDENCIAL – ENERGÍA SECUNDARIA (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>Ano</th>
<th>Carbón Vegetal</th>
<th>Kerosene/Turbo</th>
<th>Gas Natural</th>
<th>Gas Lic. de Pet.</th>
<th>Electricidad</th>
<th>Total E. Secund.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>3 044</td>
<td>25 327</td>
<td>37</td>
<td>15 030</td>
<td>17 593</td>
<td>61 031</td>
</tr>
<tr>
<td>2001</td>
<td>3 133</td>
<td>27 657</td>
<td>5</td>
<td>15 696</td>
<td>18 113</td>
<td>64 604</td>
</tr>
<tr>
<td>2002</td>
<td>2 980</td>
<td>32 288</td>
<td>4</td>
<td>17 275</td>
<td>18 746</td>
<td>71 294</td>
</tr>
<tr>
<td>2003</td>
<td>3 308</td>
<td>21 671</td>
<td>4</td>
<td>19 129</td>
<td>19 916</td>
<td>72 765</td>
</tr>
<tr>
<td>2004</td>
<td>3 851</td>
<td>12 747</td>
<td>4</td>
<td>20 489</td>
<td>20 489</td>
<td>75 246</td>
</tr>
<tr>
<td>2005</td>
<td>4 194</td>
<td>23 820</td>
<td>7</td>
<td>23 197</td>
<td>24 412</td>
<td>79 024</td>
</tr>
<tr>
<td>2006</td>
<td>4 404</td>
<td>26 371</td>
<td>33</td>
<td>26 883</td>
<td>27 377</td>
<td>83 007</td>
</tr>
<tr>
<td>2007</td>
<td>4 462</td>
<td>28 424</td>
<td>67</td>
<td>27 059</td>
<td>30 418</td>
<td>86 324</td>
</tr>
<tr>
<td>2008</td>
<td>4 029</td>
<td>30 418</td>
<td>102</td>
<td>30 937</td>
<td>31 407</td>
<td>90 355</td>
</tr>
<tr>
<td>2009</td>
<td>3 989</td>
<td>32 807</td>
<td>147</td>
<td>33 776</td>
<td>31 522</td>
<td>94 032</td>
</tr>
<tr>
<td>2010</td>
<td>3 210</td>
<td>35 232</td>
<td>252</td>
<td>35 232</td>
<td>32 108</td>
<td>99 458</td>
</tr>
<tr>
<td>2011</td>
<td>2 899</td>
<td>37 302</td>
<td>424</td>
<td>37 302</td>
<td>33 846</td>
<td>105 148</td>
</tr>
<tr>
<td>2012</td>
<td>2 467</td>
<td>39 027</td>
<td>721</td>
<td>39 027</td>
<td>34 447</td>
<td>110 474</td>
</tr>
<tr>
<td>2013</td>
<td>2 253</td>
<td>40 754</td>
<td>1 055</td>
<td>40 754</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Ilustración 18: CONSUMO DE ENERGÍA SECTOR RESIDENCIAL – POR TIPO DE ENERGÍA (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>Ano</th>
<th>Carbón Vegetal</th>
<th>Kerosene/Turbo</th>
<th>Gas Natural</th>
<th>Gas Lic. de Pet.</th>
<th>Electricidad</th>
<th>Total E. Secund.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>3 044</td>
<td>25 327</td>
<td>37</td>
<td>15 030</td>
<td>17 593</td>
<td>61 031</td>
</tr>
<tr>
<td>2001</td>
<td>3 133</td>
<td>27 657</td>
<td>5</td>
<td>15 696</td>
<td>18 113</td>
<td>64 604</td>
</tr>
<tr>
<td>2002</td>
<td>2 980</td>
<td>32 288</td>
<td>4</td>
<td>17 275</td>
<td>18 746</td>
<td>71 294</td>
</tr>
<tr>
<td>2003</td>
<td>3 308</td>
<td>21 671</td>
<td>4</td>
<td>19 129</td>
<td>19 916</td>
<td>72 765</td>
</tr>
<tr>
<td>2004</td>
<td>3 851</td>
<td>12 747</td>
<td>4</td>
<td>20 489</td>
<td>20 489</td>
<td>75 246</td>
</tr>
<tr>
<td>2005</td>
<td>4 194</td>
<td>23 820</td>
<td>7</td>
<td>23 197</td>
<td>24 412</td>
<td>79 024</td>
</tr>
<tr>
<td>2006</td>
<td>4 404</td>
<td>26 371</td>
<td>33</td>
<td>26 883</td>
<td>27 377</td>
<td>83 007</td>
</tr>
<tr>
<td>2007</td>
<td>4 462</td>
<td>30 418</td>
<td>102</td>
<td>30 937</td>
<td>30 418</td>
<td>86 324</td>
</tr>
<tr>
<td>2008</td>
<td>4 029</td>
<td>32 807</td>
<td>147</td>
<td>33 776</td>
<td>31 522</td>
<td>90 355</td>
</tr>
<tr>
<td>2009</td>
<td>3 989</td>
<td>35 232</td>
<td>252</td>
<td>35 232</td>
<td>32 108</td>
<td>94 032</td>
</tr>
<tr>
<td>2010</td>
<td>3 210</td>
<td>37 302</td>
<td>424</td>
<td>37 302</td>
<td>33 846</td>
<td>105 148</td>
</tr>
<tr>
<td>2011</td>
<td>2 899</td>
<td>39 027</td>
<td>721</td>
<td>39 027</td>
<td>34 447</td>
<td>110 474</td>
</tr>
<tr>
<td>2012</td>
<td>2 467</td>
<td>40 754</td>
<td>1 055</td>
<td>40 754</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL ENERGÍA: 165 092

Fuente: Elaboración Propia
Ilustración 19: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR RESIDENCIAL

Fuente: Elaboración Propia

Ilustración 20: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR RESIDENCIAL

Fuente: Elaboración Propia
6.4.2. Comercial

Durante el 2017, el consumo de energía en el sector comercial se incrementó en 2,1% en comparación con el 2016, esto debido a un mayor consumo de electricidad y GLP, los cuales representan el 64,7% y 10,1%, respectivamente, del consumo final total de energía en este sector. Asimismo, el consumo de leña muestra un ligero incremento impulsado por una mayor dinámica en los actividades de alojamiento y restaurantes. Finalmente, el consumo del gas natural en este sector alcanza una participación del 3%.

Ilustración 22: CONSUMO DE ENERGÍA SECTOR COMERCIAL – ENERGÍA PRIMARIA
(UNIDAD: TJ)

Fuente: Elaboración Propia
Ilustración 23: CONSUMO DE ENERGÍA SECTOR COMERCIAL – ENERGÍA SECUNDARIA
(UNIDAD: TJ)

Fuente: Elaboración Propia

Ilustración 24: CONSUMO DE ENERGÍA SECTOR COMERCIAL – POR TIPO DE ENERGÍA
(UNIDAD: TJ)

Fuente: Elaboración Propia
Ilustración 25: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR COMERCIAL

Fuente: Elaboración Propia

Ilustración 26: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR COMERCIAL

Fuente: Elaboración Propia
Durante 2017, el consumo de energía en este sector se redujo en 14,6 % con respecto al 2016. Este reducción se debió principalmente a una menor demanda de combustibles de las fuerzas armadas y policiales. Cabe destacar que el consumo de kerosene está prohibido, por lo que, los datos presentados corresponden al consumo de turbo.

Fuente: Elaboración Propia

6.4.3. Público

El uso de combustibles (Diesel, Petroleo Industrial, Gasohol y Turbo) en gran medida son destinados exclusivamente para el uso de las fuerzas armadas y policiales, y se estimó a partir del índice de gasto militar (%PBI), publicado por el Banco Mundial.
Ilustración 29: CONSUMO DE ENERGÍA SECTOR PÚBLICO – ENERGÍA SECUNDARIA
(UNIDAD: TJ)

Fuente: Elaboración Propia

Ilustración 30: CONSUMO DE ENERGÍA SECTOR COMERCIAL – POR TIPO DE ENERGÍA
(UNIDAD: TJ)

Fuente: Elaboración Propia
Ilustración 31: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR PÚBLICO

Fuente: Elaboración Propia

Ilustración 32: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR PÚBLICO

Fuente: Elaboración Propia
6.4.4. Transporte

Durante el 2017, el consumo de energía en el sector transporte creció a una tasa de 1,9% anual respecto al 2016. El combustible con mayor participación en el consumo del Sector Transporte es el diésel B5, con 52%; seguido del Gasohol y Turbo, con 18% y 11%, respectivamente.

Fuente: Elaboración Propia
Durante 2017, el consumo de energía en este sector se incrementó en 0.04% con respecto al 2016. Asimismo, el consumo de energía secundaria se incrementó en 6.2%, mientras que la energía primaria se redujo en 17.4% respecto al 2016.

Fuente: Elaboración Propia

6.4.5. Industria

Durante 2017, el consumo de energía en este sector se incrementó en 0.04% con respecto al 2016. Asimismo, el consumo de energía secundaria se incrementó en 6.2%, mientras que la energía primaria se redujo en 17.4% respecto al 2016.

Fuente: Elaboración Propia
Ilustración 37: CONSUMO DE ENERGÍA SECTOR INDUSTRIAL – ENERGÍA SECUNDARIA
(UNIDAD: TJ)

Fuente: Elaboración Propia

Ilustración 38: CONSUMO DE ENERGÍA SECTOR INDUSTRIAL – POR TIPO DE ENERGÍA
(UNIDAD: TJ)

Fuente: Elaboración Propia
Ilustración 39: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR INDUSTRIAL

Fuente: Elaboración Propia

Ilustración 40: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR INDUSTRIAL

Fuente: Elaboración Propia
6.4.6. Pesquería

Durante 2017, el consumo de energía en este sector se redujo en 5.91% con respecto al 2016. Asimismo, el consumo de energía primaria y secundaria se redujeron en 1.25% y 5.14%, respectivamente.
Ilustración 43: CONSUMO DE ENERGÍA SECTOR PESCA – ENERGÍA SECUNDARIA (UNIDAD: TJ)

Fuente: Elaboración Propia

Ilustración 44: CONSUMO DE ENERGÍA SECTOR PESCA – POR TIPO DE ENERGÍA (UNIDAD: TJ)

Fuente: Elaboración Propia
Ilustración 45: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR PESCA

Porcentaje (%)

- Leña
- Carbón Mineral
- Total E. Primaria

Porcentaje (%)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fuente: Elaboración Propia

Ilustración 46: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR PESCA

Porcentaje (%)

- Gas Natural
- Bencina 2
- Gas Licuado de Petróleo
- Gasolín Motor/Gasohol 1
- Electricidad
- Diesel B5
- Total E. Secund.

Porcentaje (%)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fuente: Elaboración Propia
6.4.7. Agropecuario

Durante 2017, el consumo de energía en este sector se incrementó en 0.78 % con respecto al 2016. No obstante, el consumo de energía primaria se redujo en 0.81%, mientras que la energía secundaria se incrementó en 0.80% respecto al 2016.
Ilustración 49: CONSUMO DE ENERGÍA SECTOR AGROPECUARIO – ENERGÍA SECUNDARIA
(UNIDAD: TJ)

Ilustración 50: CONSUMO DE ENERGÍA SECTOR AGROPECUARIO – POR TIPO DE ENERGÍA
(UNIDAD: TJ)

Fuente: Elaboración Propia
Ilustración 51: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR AGROPECUARIO

Fuente: Elaboración Propia

Ilustración 52: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR AGROPECUARIO

Fuente: Elaboración Propia
6.4.8. Minero

Durante 2017, el consumo de energía en este sector se incrementó en 2.7% con respecto al 2016.
Ilustración 55: CONSUMO DE ENERGÍA SECTOR MINERÍA– ENERGÍA SECUNDARIA (UNIDAD: TJ)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5 5 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3 498</td>
<td>35</td>
<td>11 081</td>
<td>22 724</td>
<td>33 374</td>
</tr>
<tr>
<td>2001</td>
<td>5 5 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 473</td>
<td>25</td>
<td>12 456</td>
<td>22 828</td>
<td>35 282</td>
</tr>
<tr>
<td>2002</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 022</td>
<td>914</td>
<td>14 027</td>
<td>24 247</td>
<td>36 274</td>
</tr>
<tr>
<td>2003</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 654</td>
<td>25</td>
<td>15 527</td>
<td>25 792</td>
<td>41 320</td>
</tr>
<tr>
<td>2004</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 431</td>
<td>21</td>
<td>17 493</td>
<td>25 792</td>
<td>45 286</td>
</tr>
<tr>
<td>2005</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 327</td>
<td>11</td>
<td>19 431</td>
<td>27 358</td>
<td>46 789</td>
</tr>
<tr>
<td>2006</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 304</td>
<td>9</td>
<td>21 634</td>
<td>27 358</td>
<td>49 092</td>
</tr>
<tr>
<td>2007</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 843</td>
<td>7</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2008</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2009</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2010</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2011</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2012</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2013</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2014</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2015</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2016</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
<tr>
<td>2017</td>
<td>4 4 4 4 4 4 3 3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 437</td>
<td>5</td>
<td>25 304</td>
<td>27 358</td>
<td>52 662</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Ilustración 56: CONSUMO DE ENERGÍA SECTOR MINERÍA– POR TIPO DE ENERGÍA (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>Año</th>
<th>Total E. Prim.</th>
<th>Total E. Secund.</th>
<th>TOTAL ENERGÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>5 5 4 4 4 4 3 3</td>
<td>22 724</td>
<td>22 729</td>
</tr>
<tr>
<td>2001</td>
<td>5 5 4 4 4 4 3 3</td>
<td>22 828</td>
<td>22 833</td>
</tr>
<tr>
<td>2002</td>
<td>4 4 4 4 4 4 3 3</td>
<td>24 247</td>
<td>24 252</td>
</tr>
<tr>
<td>2003</td>
<td>4 4 4 4 4 4 3 3</td>
<td>25 792</td>
<td>25 796</td>
</tr>
<tr>
<td>2004</td>
<td>4 4 4 4 4 4 3 3</td>
<td>29 700</td>
<td>29 704</td>
</tr>
<tr>
<td>2005</td>
<td>4 4 4 4 4 4 3 3</td>
<td>30 472</td>
<td>30 476</td>
</tr>
<tr>
<td>2006</td>
<td>4 4 4 4 4 4 3 3</td>
<td>30 746</td>
<td>30 748</td>
</tr>
<tr>
<td>2007</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 708</td>
<td>42 710</td>
</tr>
<tr>
<td>2008</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2009</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2010</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2011</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2012</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2013</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2014</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2015</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2016</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
<tr>
<td>2017</td>
<td>4 4 4 4 4 4 3 3</td>
<td>42 710</td>
<td>42 710</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Ilustración 57: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA PRIMARIA – SECTOR MINERÍA

Fuente: Elaboración Propia

Ilustración 58: ESTRUCTURA DE PARTICIPACIÓN ENERGÍA SECUNDARIA – SECTOR MINERÍA

Fuente: Elaboración Propia
Ilustración 59: ESTRUCTURA DE PARTICIPACIÓN POR TIPO DE ENERGÍA– SECTOR MINERÍA

Fuente: Elaboración Propia
MATRIZ Y FLUJO DE ENERGIA
VII. MATRIZ Y FLUJO DE ENERGÍA
7.1. MATRIZ DEL BALANCE NACIONAL

Ilustración 60: BALANCE ENERGÉTICO NACIONAL 2017

<table>
<thead>
<tr>
<th>DIRECCIÓN GENERAL DE EFPICENCIA</th>
<th>ENERGÍA PRIMARIA</th>
<th>ENERGÍA SECUNDARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energía</th>
<th>Unidades Originales</th>
<th>Unidades Transformadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSUMO FINAL TOTAL

<table>
<thead>
<tr>
<th>Energía</th>
<th>Unidades Originales</th>
<th>Unidades Transformadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSUMO FINAL

<table>
<thead>
<tr>
<th>Energía</th>
<th>Unidades Originales</th>
<th>Unidades Transformadas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>Energía Física</th>
<th>Energía Equivalente</th>
<th>Total (US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleo y Gas</td>
<td>14 308.1</td>
<td>14 308.1</td>
<td>14 308.1</td>
</tr>
<tr>
<td>Gasohol</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbono</td>
<td>14 308.1</td>
<td>14 308.1</td>
<td>14 308.1</td>
</tr>
<tr>
<td>Hidrocarburos</td>
<td>14 308.1</td>
<td>14 308.1</td>
<td>14 308.1</td>
</tr>
<tr>
<td>Refinería</td>
<td>14 308.1</td>
<td>14 308.1</td>
<td>14 308.1</td>
</tr>
<tr>
<td>Electricidad</td>
<td>14 308.1</td>
<td>14 308.1</td>
<td>14 308.1</td>
</tr>
<tr>
<td>Otros Energéticos</td>
<td>14 308.1</td>
<td>14 308.1</td>
<td>14 308.1</td>
</tr>
<tr>
<td>Total</td>
<td>60 311.6</td>
<td>60 311.6</td>
<td>60 311.6</td>
</tr>
</tbody>
</table>

DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA

PRODUCCIÓN DE ENERGÍA NO HÍDREA

| Fuente: Elaboración Propia |
Ilustración 62: BALANCE ENERGÉTICO NACIONAL 2017

(UNIDAD: 10^6 TEP)

ÁREA DE PLANEAMIENTO ENERGÉTICO/DGEE

<table>
<thead>
<tr>
<th>Energía Primaria</th>
<th>Energía Secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crudo</td>
<td>Crudo</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petróleo</td>
<td>Gas</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

DIRECCIÓN GENERAL DE DEFENSA \nENERGÉTICA

<table>
<thead>
<tr>
<th>Energía Primaria</th>
<th>Energía Secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crudo</td>
<td>Crudo</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petróleo</td>
<td>Gas</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

DIRECCIÓN GENERAL DE DEFENSA \nENERGÉTICA

<table>
<thead>
<tr>
<th>Energía Primaria</th>
<th>Energía Secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crudo</td>
<td>Crudo</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Petróleo</td>
<td>Gas</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

Balance Nacional de Energía 2017

Fuente: Elaboración Propia
IMPACTO MEDIO AMBIENTAL
VIII. IMPACTO MEDIO AMBIENTAL

8.1. FACTORES DE EMISIONES

En esta edición del BNE 2017, se presentan las emisiones generadas por la transformación de energía primaria en secundaria, en la transformación principalmente para la generación de electricidad y en la producción de carbón vegetal a partir de la leña. También para todas las emisiones de consumo final, con excepción del CO$_2$, producidas por la combustión de biomasa.

Para el cálculo de las emisiones, se utilizó el método de tecnologías del Intergovernmental Panel on Climate Change (IPCC), herramienta asumida por la Organización Latinoamericana de Energía (OLADE), tomando como referencia, los factores de emisión por defecto estimados por el IPCC. El método de tecnologías del IPCC, utiliza los consumos de los energéticos según las actividades desarrolladas para cada fuente de energía, estos se operan con los factores de contaminación de esta tecnología y son aplicados según el contaminante. Así se obtienen las emisiones por contaminante, tales como el dióxido de carbono (CO$_2$), metano (CH$_4$) y óxidos nitroso (N$_2$O).

Los factores de emisión son tomados de las Directrices del IPCC 2006, documento utilizado para elaborar Inventarios Nacionales de Gases de Efecto Invernadero. Respecto, a las emisiones de gasohol y el diesel B5, se han corregido los valores de emisión, dado que se están contabilizando por separado las emisiones de gasolina y diesel con los biocombustibles, incluyendo estos últimos dentro de las emisiones de biomasa. Es importante mencionar que no se ha contabilizado las emisiones generadas por el consumo de bunker en el sector transporte, por considerar que se dan fuera de las fronteras nacionales.

Ilustración 63: EMISIONES DE CO$_2$ EQUIVALENTES GENERADAS POR LA TRANSFORMACIÓN DE ENERGÍA PRIMARIA EN SECUNDARIA, CONSUMO PROPIO Y SECTORES ECONÓMICOS

Fuente: Elaboración Propia
8.2. EMISIONES DE DIÓXIDO DE CARBONO (CO₂)

Para el periodo 2000 – 2017, las emisiones de dióxido de carbono, provenientes de la transformación de energía primaria en secundaria y consumo propio, se incrementaron hasta alcanzar 14,5 mil millones de kilogramos en el año 2017 (sin considerar las emisiones de biomasa). Puede notarse un incremento sostenido de las emisiones en transformación y consumo propio principalmente, debido a la participación de la generación eléctrica a partir de gas natural. Este incremento pronunciado en la participación del gas natural en la transformación no se refleja en la misma magnitud en los consumos finales de energía, en los cuales predominan los hidrocarburos líquidos. En los consumos finales, las emisiones de dióxido de carbono, en el periodo de 2000 – 2017, se incrementaron de 21,5 a 37,7 mil millones de kilogramos (sin considerar las emisiones de biomasa), generados mayormente por los consumos en los sectores transporte e industrial.

Ilustración 64: EMISIONES DE CO₂ GENERADAS POR LA TRANSFORMACIÓN DE ENERGÍA PRIMARIA EN SECUNDARIA Y EL CONSUMO PROPIO

Ilustración 65: EMISIONES DE CO₂ GENERADAS POR EL CONSUMO FINAL DE ENERGÍA

Fuente: Elaboración Propia
8.3. EMISIONES DE METANO (CH₄)

Para el periodo 2000-2017, las emisiones de metano, provenientes de la transformación de energía primaria en secundaria y consumo propio, incrementaron de 0,395 a 1,05 millones de kilogramos, siendo la transformación de leña para la producción de carbón vegetal, y el uso de gas natural para la producción de electricidad los principales emisores.

En el periodo de 2000-2017, en el consumo final de energía, las emisiones de CH₄, se incrementaron de 36,4 a 34,6 millones de kilogramos en los consumos finales, la fluctuación ascendente proviene de los combustibles líquidos y gases.
Ilustración 68: EMISIONES DE CH₄ GENERADAS POR EL CONSUMO FINAL DE ENERGÍA

Ilustración 69: EMISIONES DE CH₄ GENERADAS POR SECTORES ECONÓMICOS

Fuente: Elaboración Propia
8.4. EMISIONES DE ÓXIDOS NITROSO (N_2O)

Para el periodo 2000-2017, las emisiones de N_2O, provenientes de la transformación de energía primaria en secundaria y consumo propio, se incrementaron de 0,07 a 0,15 millones de kilogramos, explicándose este incremento por la formación de N_2O a altas temperaturas en la combustión del gas para la generación de electricidad.

En los consumos finales, las emisiones de N_2O se deben básicamente al uso de hidrocarburos líquidos en el sector transporte. En el periodo de 2000-2017, las emisiones de N_2O, se incrementaron de 1,1 a 1,64 millones de kilogramos.

Ilustración 70: EMISIONES DE N_2O GENERADAS POR LA TRANSFORMACIÓN DE ENERGÍA PRIMARIA EN SECUNDARIA Y EL CONSUMO PROPIO

Ilustración 71: EMISIONES DE N_2O GENERADAS POR EL CONSUMO FINAL DE ENERGÍA

Fuente: Elaboración Propia
Ilustración 72: EMISIONES DE N$_2$O GENERADAS POR SECTORES ECONÓMICOS

Fuente: Elaboración Propia
INDICADORES ECONÓMICOS ENERGÉTICOS
IX. INDICADORES ECONÓMICOS ENERGÉTICOS

9.1. INDICADORES SOCIOECONÓMICOS

9.1.1. PBI Nacional y Sectorial

Desde el año 2000 hasta la actualidad, la actividad económica nacional\(^2\) ha presentado tasas de crecimiento positivas con una variación promedio anual de 5%. No obstante, en el año 2017 dicha actividad creció a una tasa de 2.5% en relación al 2016, totalizando así un nivel de actividad de 514.2 mil millones de Soles a precios constantes de 2007.

En el 2017, los sectores económicos que más crecieron fueron: i) Sector pesca (4.7%), el cual alcanzó un nivel de actividad de 1.7 mil millones de Soles; ii) Sector público (3.7%), el cual alcanzó un nivel de actividad de 26.1 mil millones de Soles; iii) Sector minería (3.2%), el cual alcanzó un nivel de actividad de 6.7 mil millones de Soles y iv) Sector terciario (2.9%), el cual alcanzó un nivel de actividad de 326.2 mil millones de Soles. De otro lado, el sector manufactura se redujo en 0.2%, alcanzando un nivel de actividad de 66.3 mil millones de Soles en el 2017.

![Ilustración 73: PBI NACIONAL Y SECTORIAL](image)

Fuente: Elaboración Propia / INEI

(*) Electricidad, Gas, Agua, Construcción, Comercial, Otros Servicios e Impuestos

En términos de composición sectorial del PBI nacional, se puede apreciar que el sector terciario ha mantenido la mayor participación sectorial a lo largo del horizonte de análisis, ascendiendo a un nivel de 63% al 2017. Mientras que el sector minero e hidrocarburos y el sector manufactura registraron una participación de 13% en ambos casos.

\(^2\) Medida como el Producto Bruto Interno (PBI) a precios constantes del 2007.
A nivel general, se puede apreciar que la composición sectorial se ha mantenido estable a lo largo del horizonte de análisis.

Ilustración 74: COMPOSICIÓN SECTORIAL DEL PBI

Fuente: Elaboración Propia / INEI
(*) Electricidad, Gas, Agua, Construcción, Comercial, Otros Servicios e Impuestos

9.1.2. Inversión Público y Privada

La inversión nacional pasó de 38 mil millones de Soles a 112 mil millones de Soles entre los años 2000 y 2017; asimismo, la inversión pública y la inversión privada ascendieron a 25 y 37 mil millones de Soles, respectivamente, para el año 2017.

No obstante, dichas inversiones han mostrado tasas de crecimiento positivas y negativas a lo largo del horizonte de análisis, con un crecimiento promedio anual de 6% y 7%, respectivamente. Asimismo, durante el 2017, las tasas de crecimiento de la inversión pública e inversión privada registraron variaciones porcentuales de -3% y 3%, respectivamente.

Ilustración 75: INVERSIÓN PÚBLICO-PRIVADA

Fuente: Elaboración Propia / INEI
9.1.3. PBI per cápita vs IDH

Respecto al PBI per cápita, se puede apreciar que dicha serie presenta una tendencia creciente a lo largo del horizonte de análisis, situándose en 16,157 Soles (precios constantes de 2007) por cada habitante del país durante el año 2017. Dicho valor representa un incremento de 1.4% en relación a lo reportado para el año 2016 y un crecimiento anualizado de 3.6% entre el 2000-2017. De otro lado, el Índice de Desarrollo Humano también muestra un comportamiento secular a lo largo del horizonte de análisis, situándose en un valor de 75 puntos para el 2017. Dicho valor representa un incremento de 0.3% en relación a lo reportado para el año 2016 y un crecimiento anualizado de 0.6% entre el 2000-2017. A nivel general, se puede apreciar la relación directa entre el PBI per cápita y el Índice de Desarrollo Humano, por tanto, se puede inferir que a medida en que aumenta el ingreso medio anual de cada habitante se estaría generando mejoras de bienestar en el país y, por ende, incrementos en el IDH.

Ilustración 76: PBI PER CÁPITA VS IDH

Fuente: Elaboración Propia - INEI, PNUD
(*) Índice de Desarrollo Humano.

9.1.4. PBI Energético

Con la finalidad de contar con una variable macroeconómica que represente el nivel de actividad del sector energía (Electricidad, Gas e Hidrocarburos), se construyó el PBI energético a partir de la información sectorial del INEI y Matriz Insumo Producto del 2009 (MIP). En general, se puede apreciar que dicha serie presenta una tendencia creciente a lo largo del horizonte de análisis, totalizando así un nivel de actividad de 16.9 millones de Soles a precios constantes de 2007. Asimismo, el nivel de actividad ha mostrado tasas de crecimiento positivas y negativas a lo largo del horizonte, con un crecimiento promedio anual de 5%. Mientras que en el año 2017 dicha variable creció a una tasa de 3% en relación al 2016, con una participación del 3.3% del PBI nacional.
9.1.5. Población Urbano-Rural y PEA Ocupada

Durante el año 2017, la población ascendió a 31 826 miles de habitantes, mientras que la población urbana y rural ascendieron a 24 708 y 7 118 miles de habitantes. De otro lado, se puede apreciar que la población urbana ha mostrado una tendencia creciente durante el periodo de análisis con un crecimiento anualizado de 1.9%; mientras que la población rural ha mostrado una tendencia decreciente durante el periodo de análisis con una variación anualizada de -0.8%.

Finalmente, la Población Economicamente Activia (PEA) Ocupada ascendió a 16 511 miles de habitantes. Dicho valor representa un incremento de 1.94% en relación a lo registrado en el año 2016 y un crecimiento anualizado de 1.96% entre el 2001-2017.
9.1.6. Coeficiente de Electrificación e Inversión en Distribución.

Durante el año 2017, el Coeficiente de Electrificación Rural ascendió a 93% con una inversión acumulada de electrificación rural (ejecutado por la DGER-MINEM) de 1,683 millones de US$. Asimismo, en relación al año 2016, dicho coeficiente se incrementó en 4%; mientras que la inversión acumulada subió en 3%. Durante el horizonte de análisis se puede apreciar una relación directa entre el Coeficiente de electrificación rural y sus niveles de inversión realizados por la Dirección General de Electrificación Rural (DGER) del MINEM.

![Ilustración 79: COEFICIENTE DE ELECTRIFICACIÓN RURAL E INVERSIÓN](image)

Fuente: Elaboración Propia / OSINERGMIN - DGE
(*) Datos obtenidos del "Observatorio Energético de Osinergmin" a partir de la información del PNER 2016-2025.

De otro lado, el Coeficiente de Electrificación ascendió a 96% con una inversión acumulada en Distribución de 4,235 millones de US$. Asimismo, en relación al año 2016, dicho coeficiente se incrementó en 1%; mientras que la inversión acumulada subió en 6%. Durante el horizonte de análisis se puede apreciar una relación directa entre el coeficiente de electrificación y sus niveles de inversión en Distribución.

![Ilustración 80: COEFICIENTE DE ELECTRIFICACIÓN E INVERSIÓN EN DISTRIBUCIÓN](image)

Fuente: Elaboración Propia / OSINERGMIN - DGE
(*) Datos obtenidos del "Observatorio Energético de Osinergmin" a partir de la información del PNER 2016-2025. (***) Las inversiones corresponden a las realizadas por el Sector Público y Privado.
9.2. INDICADORES ENERGÉTICOS

9.2.1. Intensidad Energética

La intensidad energética (IE), es un indicador que mide la productividad de la energía dentro de un proceso económico. También se puede definir como la cantidad de energía que se necesita para producir una unidad monetaria.

Desde el año 2000 hasta la actualidad dicho indicador ha registrado una reducción significativa en su magnitud de 5.90 a 4.26 TJ/MM US$ de 2010 durante el periodo de análisis (variación anualizada de -2.0%) como consecuencia de un uso más eficiente de la energía, mayor participación de fuentes comerciales y mejoras de productividad.

No obstante, en el 2017 se registra un valor de 4.26 TJ/MM US$ de 2010, menor en 2.0% respecto a lo registrado en el 2016 (4.35 TJ/MM US$ de 2010).

Ilustración 81: INTENSIDAD ENERGÉTICA NACIONAL

Fuente: Elaboración Propia / BM
(*) Total de Energía Consumida entre el PBI Nacional expresado en MM US$ de 2010

En términos comparativos, con datos del año 2016, el nivel de intensidad energética del Perú fue menor en relación a lo registrado para países como Bolivia, Paraguay, Venezuela, Ecuador, Argentina, Chile y México, por tanto, se puede inferir que nuestra economía ha registrado un uso más eficiente de la energía en comparación a los países mencionados.
9.2.2. Consumo de Energía Per Cápita

El consumo energético por habitante ha mostrado una tendencia creciente durante el periodo de análisis, pasando de un consumo per cápita de 19.5 TJ/Mil Habitantes en el año 2000 a un consumo de 26.6 para el año 2017, con una variación porcentual anualizada de 1.8%. No obstante, con relación al 2016, el consumo per cápita cayó en 0.6% (26.6 TJ/Mil Habitantes en 2016).

Fuente: Elaboración Propia / INEI
(*) Total de Energía Consumida entre el número de Habitantes expresado en miles de Habitantes.
En términos comparativos, con datos del año 2016, el consumo per cápita de Perú fue menor en relación a lo alcanzado por países como Chile, Uruguay, Argentina, Venezuela, Brasil, México, Paraguay y Ecuador. Sin embargo, dicho consumo fue mayor a lo registrado para Colombia y Bolivia.

Ilustración 84: CONSUMO PER CÁPITA AMERICA LÁTINA Y MÉXICO

Fuente: Elaboración Propia / CEPAL - OLADE
(*) Total de Energía Consumida entre el número de Habitantes expresado en miles de Habitantes. Información corresponde al año 2016 debido a la disponibilidad de los datos para América Latina.

9.2.3. Índice de Desarrollo Humano Vs. Intensidad Energética

Para efectos del balance se ha considerado la información al 2017 del Programa de las Naciones Unidas para el Desarrollo (PNUD). En ese sentido, se muestra la evolución de la intensidad energética versus el índice de desarrollo humano, para el período 2000 – 2017.

Durante este periodo, a medida que la intensidad energética disminuye, el índice de desarrollo humano se incrementa. Como se puede apreciar, el IDH del país ha aumentado progresivamente, pasando de 0.68 en el año 2000 a 0.75 en el año 2017, lo cual representa un crecimiento acumulado de 10.8%, con una variación porcentual anualizada de 0.6%, esto como consecuencia de la mejora en los indicadores que componen el índice.

Asimismo, se puede observar la relación inversa presente en la intensidad energética e IDH, que se ve fortalecida por el aumento en el uso de las energías provenientes de fuentes comerciales (en comparación con otras fuentes como leña, bosta y yareta, entre otros) más limpias, disminuyendo así los efectos dañinos de la combustión de las fuentes tradicionales sobre la salud de las personas.
A nivel regional, la relación inversa se mantiene entre la IE y el IDH para los países de América Látila y México, considerando el promedio anual del periodo de análisis y la disponibilidad de información (2000-2016). En particular, Bolivia presenta la mayor IE de la región (9.7 TJ/MM US$ 2010) y menor IDH (0.6); mientras que Chile y Uruguay muestran los mejores resultados para estos indicadores.

Fuente: Elaboración Propia / CEPAL, PNUD

(*) Se tomó el promedio anual de los últimos 17 años (2000-2016).
9.2.4. Índice de Desarrollo Humano Vs. Consumo de Energía Per Cápita

Durante el periodo comprendido entre los años 2000 y 2017, se aprecia que a medida que el consumo de energía per-cápita se incrementa, el índice de desarrollo humano también crece.

Como se mencionó anteriormente, el aumento en el consumo energético por habitante se debe al crecimiento económico del país y al crecimiento de la participación de los hidrocarburos en los últimos años, los cuales produjeron efectos positivos en el Ingreso Nacional Bruto y la esperanza de vida, respectivamente; ambos componentes del IDH. Por lo tanto, puede apreciarse una relación positiva entre ambos indicadores.

Ilustración 87: IDH VS CONSUMO PER CÁPITA

A nivel regional, se mantiene la relación directa entre el Consumo de Energía per cápita y el IDH para los países de América Latina y México. En particular, Bolivia presenta el menor Consumo per cápita de la región (19.1 TJ/Mil Habiante) y menor IDH (0.6); mientras que Chile registra los mejores resultados para estos indicadores.
9.3. INDICADORES AMBIENTALES

9.3.1. Emisiones de CO₂

En la siguiente ilustración se muestra la evolución de las emisiones de CO₂ en relación al nivel de consumo final de energía para el horizonte de análisis. En general, se puede observar un tendencia decreciente en el nivel de emisiones por energía consumida, alcanzando un nivel de 61.63×10^3 kg por TJ al 2017 para el CO₂.

Fuente: Elaboración Propia / CEPAL, OLADE, PNUD

9.3.2. Emisiones de \(\text{CH}_4 \) y \(\text{N}_2\text{O} \)

En la siguiente ilustración se muestra la evolución de las emisiones de \(\text{CH}_4 \) y \(\text{N}_2\text{O} \) en relación al nivel de consumo final de energía para el horizonte de análisis. En general, se puede observar una tendencia decreciente en el nivel de emisiones por energía consumida, alcanzando un nivel de 0,0421 y 0,0021 \(\text{kg} \) por TJ al 2017 para el \(\text{CH}_4 \) y \(\text{N}_2\text{O} \), respectivamente.

Ilustración 90: INTENSIDAD DEL \(\text{CH}_4 - \text{NO}_x \)

Fuente: Elaboración Propia
BALANCES ESPECÍFICOS POR ENERGÉTICOS
X. BALANCES ESPECÍFICOS POR ENERGÉTICOS

10.1. BALANCE DE ENERGÍA ELÉCTRICA

10.1.1. Esquema Energético

Con el propósito de clarificar los flujos de la cadena de energía eléctrica, desde la entrada del recurso (energías primarias y secundarias) hasta el consumo al usuario final, se muestra de manera esquemática el proceso de transformación en las plantas de generación, las importaciones y exportaciones, consumos propios, pérdidas y el consumo final en los distintos sectores. Nuestra matriz es diversificada, para la generación de energía eléctrica se utiliza hasta 8 fuentes de energía de las cuales; 3 son de origen renovable, 3 de los derivados de petróleo y gas y el resto son de residuos y origen mineral.

Ilustración 91: ESQUEMA DE LA CADENA DE ENERGÍA ELÉCTRICA

Fuente: Elaboración Propia

10.1.2. Energía Primaria

La energía eléctrica se produce en plantas de generación a través de distintas tecnologías, ya sea a partir de recursos energéticos primarios o secundarios (productos de una transformación) y es utilizado tanto en el mercado eléctrico (uso público) como en el uso propio (autoproductores).

Las fuentes de energía primaria que han sido aprovechados para la generación de energía eléctrica son: Carbón Mineral, Hidroenergía, Energía Eólica, Energía solar, Residuos de biomasa (bagazo de caña) y Residuos sólidos (Biogás). De estas fuentes, se resalta la mayor participación de la hidroenergía sobre todo en el mercado eléctrico con 88.6%, mientras que el bagazo y el carbón son las energías primarias mayormente utilizadas para el uso propio. En el caso de los autoproductores o uso propio, se trata de empresas que poseen su propia central para producir su propia energía eléctrica y ocasionalmente venden el excedente al mercado eléctrico. En la siguiente tabla se...
muestra la generación de energía eléctrica del 2017 con fuentes primarias en unidades originales.

Tabla 29: ENERGÍA PRIMARIA PARA GENERACIÓN DE ENERGÍA ELÉCTRICA (UNIDADES ORIGINALES)

<table>
<thead>
<tr>
<th>Recurso</th>
<th>Unidad</th>
<th>Mercado Eléctrico</th>
<th>Uso propio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón</td>
<td>10³ ton</td>
<td>245,77</td>
<td>60,87</td>
<td>306,64</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>GW. h</td>
<td>35 491,26</td>
<td>851,88</td>
<td>36 343,14</td>
</tr>
<tr>
<td>Eólico</td>
<td>GW. h</td>
<td>1 073,43</td>
<td>1 073,43</td>
<td>1 073,43</td>
</tr>
<tr>
<td>Solar</td>
<td>GW. h</td>
<td>287,20</td>
<td></td>
<td>287,20</td>
</tr>
<tr>
<td>Bagazo</td>
<td>10³ ton</td>
<td>568,46</td>
<td>1 711,34</td>
<td>2 279,81</td>
</tr>
<tr>
<td>Biogás</td>
<td>10⁶ pc</td>
<td>940,86</td>
<td></td>
<td>940,86</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

En la siguiente tabla se muestra misma información de las energías primarias, pero en unidades energéticas, de tal manera que nos permita conocer el total de las energías primarias utilizadas en la generación de energía eléctrica.

Tabla 30: ENERGÍA PRIMARIA PARA GENERACIÓN DE ENERGÍA ELÉCTRICA (UNIDAD: TJ)

<table>
<thead>
<tr>
<th>Recurso</th>
<th>Mercado Eléctrico</th>
<th>Uso propio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón</td>
<td>7 506,46</td>
<td>1 859,25</td>
<td>9 365,71</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>127 706,11</td>
<td>3 065,26</td>
<td>130 771,37</td>
</tr>
<tr>
<td>Eólico</td>
<td>1 033,42</td>
<td></td>
<td>1 033,42</td>
</tr>
<tr>
<td>Solar</td>
<td>3 862,47</td>
<td></td>
<td>3 862,47</td>
</tr>
<tr>
<td>Bagazo</td>
<td>3 567,68</td>
<td>10 740,38</td>
<td>14 308,06</td>
</tr>
<tr>
<td>Biogás</td>
<td>390,59</td>
<td></td>
<td>390,59</td>
</tr>
<tr>
<td>TOTAL</td>
<td>144 066,72</td>
<td>15 664,89</td>
<td>159 731,60</td>
</tr>
</tbody>
</table>

Fuente: Elaboreación Propia

Ilustración 92: PARTICIPACIÓN DE LA ENERGÍA PRIMARIA MERCADO ELÉCTRICO

<table>
<thead>
<tr>
<th>Energía</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidroenergía</td>
<td>88,6%</td>
</tr>
<tr>
<td>Eólico</td>
<td>0.7%</td>
</tr>
<tr>
<td>Solar</td>
<td>2.7%</td>
</tr>
<tr>
<td>Bagazo</td>
<td>2.5%</td>
</tr>
<tr>
<td>Biogás</td>
<td>0.3%</td>
</tr>
<tr>
<td>Carbón</td>
<td>5.2%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Carbón Mineral

El uso del carbón mineral como fuente de energía primaria para la generación de energía eléctrica, se inicio en el año 2000 con la entrada en operación de la Central Térmica a Vapor Ilo 2 de 140 MW de capacidad efectiva actual y de propiedad de la empresa ENGIE Energía Perú S.A. La central se localiza en el sur del país y suministra de energía eléctrica al mercado eléctrico, es la única planta a carbón bituminoso disponible en el SEIN.

En el siguiente cuadro se muestra la evolución del consumo del carbón mineral para la generación eléctrica, tanto el mercado eléctrico como uso propio, el cual tuvo un crecimiento sostenido hasta el 2010, para luego descender debido al mayor despacho de las centrales a gas natural y por la entrada de nuevos enlaces de interconexión entre el centro y sur del sistema. En el 2016, se observa el incremento del consumo carbón debido al mayor despacho de la C. T. Ilo 2, generado por la congestión en el sistema de transmisión y por la aparición del fenómeno de resonancia subsíncrona en el SEIN que afectó a algunas turbinas a gas de ciclo abierto en la zona del sur del país. En el 2017 se presenta la disminución del consumo de carbón en el orden del 5% de respecto al año anterior.

Bagazo

Es el residuo agroindustrial de mayor uso en el país, obtenido después de moler la caña. Es aprovechado para generar vapor, por aquellas empresas que disponen de esta fuente de energía primaria (empresas azucareras y plantas de alcohol carburante). En algunos casos, el vapor generado a partir del bagazo sirve para la producción de energía...
eléctrica a través de sistemas de cogeneración, además de atender las demandas térmicas de la planta.

El mayor aprovechamiento de este recurso se observa en el uso propio de los autoproductores, principalmente por las empresas Complejo Agroindustrial Cartavio S.A.A. y Empresa Agroindustrial Casa Grande S.A.A, registrando en el 2017 un incremento del consumo en el orden del 85% respecto al año anterior. Asimismo, el uso propio tuvo una participación del 75% del consumo total, muy superior a lo aprovechado en el mercado eléctrico.

Cabe señalar que el uso del bagazo se intensifica en los últimos años para el Mercado Eléctrico, con la entrada en operación de las centrales: C.T. Paramonga de Agro Industrial Paramonga S.A., la C.T. Caña Brava de Bioenergía del Chira S.A. y la C.T. Maple Etanol de la empresa Agropecuaria Aurora S.A.C.

Hidroenergía

El país tiene un gran potencial hidroeléctrico, esto fue confirmado con el reciente estudio para determinar el potencial hidroeléctrico en la zona sur del país, desarrollado en el año 2016 como parte del convenio suscrito entre el MEM y la CAF, con fondos del programa PROSEMER del MEF, donde también participó el Banco Interamericano de Desarrollo (BID).

La identificación del potencial hidroeléctrico de la zona sur abarcó las cuencas hidrográficas de Apurímac, Madre de Dios, Purús, Grande, Chili, Tambo y Titicaca, habiéndose determinado un gran potencial para el aprovechamiento del recurso hídrico en la generación de energía eléctrica equivalente a 57 846 MW de los cuales, un 76,2% se concentra en la cuenca Apurímac.

De otro lado, al desarrollarse el uso del gas de Camisea, la participación de la generación de las centrales hidroeléctricas se ha ido reduciendo paulatinamente, teniendo al 2017, una participación en el orden del 55% del total de energía producida. Esta energía
eléctrica generada tuvo un incremento en 20% respecto al año anterior, producto de las mayores lluvias registradas en el año y por el ingreso de las centrales: C.H. Cerro del Aguila y la C.H. Chaglla de 525 y 456 MW de potencia instalada respectivamente.

De la totalidad de la energía generada por las centrales hidroeléctricas, el 98% se genera para el mercado eléctrico y el resto para uso propio; para el año en análisis, en el mercado eléctrico se registró una producción de 28 393 GWh y para uso propio la producción fue de 682 GWh.

Solar

El aprovechamiento del sol como fuente de energía primaria, para la generación de energía eléctrica en el SEIN se inició en el 2012 con la entrada en operación de las centrales solares: C.S. Tacna Solar y C.S. Moquegua FV, con 20 y 16 MW respectivamente de potencia instalada. En el 2017 se incrementa la capacidad instalada significativamente con la entrada de la C.S. Rubi de 144 MW, acumulándose al 2017 una potencia instalada con energía solar de 244 MW. Cabe precisar que estas centrales solares fueron promovidas mediante el mecanismo subastas RER.

En relación a la evaluación histórica de la producción se observa un crecimiento anual del 37%, producto de las iniciativas mencionadas. Al respecto, se debe precisar que la C.S. Rubi operó no comercialmente en el 2017, por lo que, se espera que en el 2018, la central solar alcance los niveles máximos de generación.
Eólica

El uso del viento como fuente de energía primaria tuvo sus inicios hace muchos años en el país, pero fue de manera experimental, a través de las centrales eólicas: C.E. Marcona y C.E. Pto. Malabrigo cuyas capacidades instaladas en conjunto no superan los 0.7 MW. Esta situación se modificó con el mecanismo de subastas RER promovidas por el Estado, lográndose instalar del 2014 al 2017, 239 MW de potencia instalada, entre los cuales destacan las centrales: C.E. Cupisnique y C.E. Tres Hermanas con 80 y 97 MW de potencia instalada respectivamente.

En relación a la evolución de la generación de energía eléctrica, se muestra en la siguiente ilustración el crecimiento exponencial que ha tenido este recurso, con un incremento anual promedio de 61%. Cabe precisar que el aprovechamiento de la energía eólica solo se ha dado en el mercado eléctrico, por lo incentivos comentados, mientras que en las empresas Autoproductoras aún no existen iniciativas de inversión.
Biogás

La generación térmica a partir de la biomasa usando el biogás generado en el relleno sanitario, se inició en el 2011 con la operación de la C.T. Huaycoloro de 4.2 MW de potencia instalada, ampliándose la capacidad de este energético con el ingreso en el 2015 de C.T. La Gringa V de 3.2 MW de capacidad.

![Ilustración 98: EVALUACIÓN DEL CONSUMO DE BIOGÁS](image)

Fuente: Elaboración Propia / Consumo de Combustibles Reportados de la DGE

Cabe señalar que esta central genera su máxima capacidad disponible al igual que las centrales renovables, debido a que tienen prioridad en el despacho de las centrales.

10.1.3. Importación y Exportación

A la fecha, el único intercambio internacional de energía eléctrica que cuenta el Perú es con Ecuador, es un intercambio que busca optimizar los recursos energéticos de ambos países, sobre todo de los recursos hídricos dada su complementariedad, puesto que, cuando se produce la temporada de avenida en nuestro país, en Ecuador se encuentran en época de estiaje y viceversa.

En ese contexto, desde el 2016 se han suscritos contrato suministro de electricidad entre las empresas eléctricas privadas de Perú; ENEL Generación Perú S.A.A, ENGIE Energía Perú S.A., KALLPA Generación S.A. y la empresa Pública Estratégica Corporación Eléctrica del Ecuador (CELEC EP)

Durante del año 2017, solo se han presentado importaciones mas no exportaciones. Las importaciones registradas equivalen a 16 595 MWh. Si bien, los niveles de intercambios comerciales actuales son bajos, se espera que estos aumenten cuando se construya la línea de 500kV que conecte a ambos países, esta línea será próximamente convocada a licitación por PROINVERSION.
10.1.4. **Centrales de Generación**

Las centrales de generación (Centros de Transformación) están referidos a las instalaciones en donde se procesa la energía tanto primaria como secundaria, de tal forma de obtener la energía eléctrica para la atención de la demanda. Para tal fin, existen en el país diversas tecnologías de centrales, que son agrupado dependiendo del tipo de origen, las mismas que se muestran en la siguiente tabla.

Tabla 31: TECNOLOGÍAS PARA GENERACIÓN DE ENERGÍA ELECTRICA

<table>
<thead>
<tr>
<th>Central</th>
<th>Tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrales Hidroeléctricas</td>
<td>Con embalse
De pasada convencionales
RER (menores a 20 MW)</td>
</tr>
<tr>
<td>Centrales Solares</td>
<td>Fotovoltaicas</td>
</tr>
<tr>
<td>Centrales Eólicas</td>
<td>Aerogeneradores</td>
</tr>
<tr>
<td>Centrales Térmicas</td>
<td>Turbinas a Vapor (TV)
Motores de Combustión Interna
Turbinas a Gas (TG)
Ciclos Combinados (combinacion TG y TV)</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Con la entrada del gas de Camisea, el parque de generación eléctrica en el país crece sustancialmente a través de centrales térmicas de ciclo simple y ciclos combinados, a esto se suma las centrales térmicas asociadas a la reserva fría y otras centrales duales del nodo energético que serías abastecidas por el gaseoducto del sur.

En la siguiente tabla se muestra la potencia instalada a nivel nacional de las centrales de generación por tipo de energético y mercado al 2017, se aprecia que centrales térmicas son las más utilizadas, seguida por las centrales de origen hidráulico.

Tabla 32: POTENCIA INSTALADA POR TIPO DE MERCADO

<table>
<thead>
<tr>
<th>Generación</th>
<th>Mercado Eléctrico</th>
<th>Uso propio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrales Hidroeléctricas</td>
<td>5 115,7</td>
<td>130,2</td>
<td>5 245,9</td>
</tr>
<tr>
<td>Centrales Eólicas</td>
<td>240,0</td>
<td>0,0</td>
<td>240,0</td>
</tr>
<tr>
<td>Centrales Solares</td>
<td>244,5</td>
<td>0,0</td>
<td>244,5</td>
</tr>
<tr>
<td>Centrales Térmicas</td>
<td>7 638,6</td>
<td>1 365,8</td>
<td>9 004,4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13 238,8</td>
<td>1 496,0</td>
<td>14 734,8</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Como se ha mencionado nuestro parque de generación actual es térmico e hídrico fundamentalmente, sobre todo el térmico con gas natural ha creciendo mucho en los últimos años. En el año 2017 la participación de potencia instalada de las centrales térmicas en el mercado eléctrico y para uso propio fue 57.7% y 91.3% respectivamente, tal como se observa en las siguientes ilustraciones.
En relación a la evaluación histórica, se muestra el crecimiento de las centrales térmicas a partir del 2004 con el ingreso del gas de Camisea, mientras que las inversiones en centrales hidráulicas estuvieron retraídas debido a los costos de generación del mercado y los pocos incentivos, solo a partir del 2016 es apreciable un mediano crecimiento debido al ingreso de las Centrales Hidráulicas Cerro del Águila y Chaglla, las cuales necesitaron de la promoción del Estado a través de PROINVERSIÓN.
De otro lado, durante el 2017 se registraron retiros e ingresos de centrales, las cuales son mostradas en la siguiente tabla:

Tabla 33: CENTRALES QUE INGRESARON Y SE RETIRARON DEL SEIN EN EL 2017 (MW)

<table>
<thead>
<tr>
<th>Generación</th>
<th>Ingresadas</th>
<th>Retrasadas</th>
<th>Neto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrales Hidroelécticas</td>
<td>64,20</td>
<td>136,16</td>
<td>-71,96</td>
</tr>
<tr>
<td>Centrales Térmicas</td>
<td>35,00</td>
<td>136,76</td>
<td>-101,76</td>
</tr>
<tr>
<td>Centrales Solares</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Centrales Eólicas</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>99,20</td>
<td>272,92</td>
<td>-173,72</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia/COES
10.1.5. Energía Secundaria

Energía Eléctrica

La energía eléctrica es una energía secundaria, que además de obtenerse a partir de las fuentes primarias ya mencionadas, también se puede obtener a partir de procesos de transformación en plantas térmicas, obteniéndose de otras fuentes secundarias tales como; Diésel, Fuel Oil (petróleo industrial) y Gas Natural, especialmente este último con mayor requerimiento en la generación para el mercado eléctrico.

Como ya se indicó, la base de la generación de energía eléctrica en el país es predominantemente generación hidráulica, seguido por el parque termoeléctrico a base de gas natural. La generación con fuentes renovables no convencionales, principalmente solar y eólica, aun es pequeña, sin embargo, se espera que se incremente su participación con la entrada de las centrales comprometidas en las últimas subastas RER.

En la siguiente ilustración se presenta la participación de las distintas fuentes de energía para la producción de electricidad en el 2017. Como ya se mencionó, se resalta la mayor participación de la generación hidroeléctrica (55.2%) debido al incremento del recurso hidráulico y en la generación térmica (42.2%), esta última se sustenta en base a la generación con gas natural, principalmente de Camisea

![Ilustración 103: PARTICIPACIÓN EN LA PRODUCCIÓN DE ENERGÍA ELÉCTRICA A NIVEL NACIONAL](image)

Fuente: Elaboración Propia / Estadísticas de la DGE

La evolución histórica de la producción de energía eléctrica en el mercado eléctrico muestra el crecimiento sostenido de la generación térmica a través del aprovechamiento del gas natural, iniciándose con centrales de ciclo simple para luego convertirse en centrales de ciclos combinados, mejorando la eficiencia de las centrales. Otro aspecto que se resalta en los últimos años es la mayor presencia de las centrales renovables, principalmente de la Energía Eólica.
Con respecto al uso propio de la energía eléctrica por las empresas Autoproductoras, los generadores más importantes están en la industria petrolera, utilizando petróleo crudo y gas natural; y en la industria azucarera, que utiliza bagazo de caña. Asimismo, varios autoproducdores inyectan el excedente de la energía eléctrica generada a la red del mercado eléctrico. En la evolución histórica se observa el mayor aprovechamiento en la generación térmica, sin embargo, en los últimos 3 años ha decaído debido al costo oportunidad que tienen las empresas de comprar al mercado eléctrico a precios muy bajos.

Durante el año 2017, la energía eléctrica producida en el país fue de 52 743 GWh, superior en 2,0 % respecto al año anterior, esta producción incluye la energía generada...
en el Sistema Eléctrico Interconectado Nacional (SEIN), sistemas aislados y las que se generan para uso propio tanto para las empresas informantes y no informantes. Del total de la energía generada, el 96% corresponde a las centrales que generan para el mercado eléctrico y el resto a las que generan para uso propio.

<table>
<thead>
<tr>
<th>Generación</th>
<th>Mercado Eléctrico</th>
<th>Uso propio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrales Hidróelectricas</td>
<td>28,393,011</td>
<td>681,502</td>
<td>29,074,513</td>
</tr>
<tr>
<td>Centrales Térmicas</td>
<td>20,591,218</td>
<td>1,673,689</td>
<td>22,264,907</td>
</tr>
<tr>
<td>Centrales Solares</td>
<td>287,200</td>
<td>42,523</td>
<td>329,723</td>
</tr>
<tr>
<td>Centrales Eólicas</td>
<td>1,073,432</td>
<td>0</td>
<td>1,073,432</td>
</tr>
<tr>
<td>TOTAL</td>
<td>50,344,862</td>
<td>2,397,714</td>
<td>52,742,576</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas de la DGE

Combustibles

Las centrales térmicas consumen hidrocarburos como fuente de energía secundaria, a partir del cual se genera energía eléctrica, estos hidrocarburos en orden de importancia son: Gas Natural, Diesel y Fuel Oil (Petróleo Industrial). Los consumos de estos combustibles son mostrado en la tabla siguiente, los mismos que incluyen los consumos en el Sistema Eléctrico Interconectado Nacional y en los Sistemas Aislados.

<table>
<thead>
<tr>
<th>Recurso</th>
<th>Unidad</th>
<th>Mercado Eléctrico</th>
<th>Uso propio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>10³ galones</td>
<td>72,655</td>
<td>38,600</td>
<td>111,255</td>
</tr>
<tr>
<td>Fuel Oil (Residual)</td>
<td>10³ galones</td>
<td>25,896</td>
<td>16,467</td>
<td>42,363</td>
</tr>
<tr>
<td>Gas Natural</td>
<td>10⁹ m³</td>
<td>3,845,475</td>
<td>249,369</td>
<td>4,094,844</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Consumo de Combustibles Reportados de la DGE y estimados por la DGEE.

El mercado eléctrico orientado al servicio público de energía eléctrica registra mayor consumo de combustibles que el de uso propio, especialmente de Gas Natural, razón por la cual, casi el 50% de nuestra generación se sustenta en este combustible. Los Autoproductores (uso propio) también registran mayor consumo en gas natural pero en menor proporción, progresivamente van sustituyendo este combustible en lugar del Diesel o Fuel Oil (Residual).
Ilustración 106: CONSUMO DE COMBUSTIBLE POR TIPO DE MERCADO
(UNIDAD: TJ)

En las siguientes ilustraciones se muestran la participación de los combustibles en el mercado eléctrico y uso propio, en donde se resalta lo mencionado sobre la fuerte penetración del gas natural en la generación de energía eléctrica.
Cabe precisar, que la comparación anterior es a nivel de energía secundaria y no incluye los combustibles primarios como son: el carbón mineral, el bagazo y el biogás.

En ese sentido, a fin de mostrar la influencia de todos los combustibles en la generación térmica del país, en las siguientes ilustraciones se incluye los combustibles de origen primario. Se reafirma la alta penetración del gas natural en el mercado eléctrico, mientras que el bagazo es un combustible importante para el uso propio de los Autoproductores.
Diesel

Durante el año 2017, el consumo de diesel para la generación eléctrica del mercado eléctrico, registró un incremento del 77% respecto al año anterior, mientras que en el uso propio, se mantuvo casi constante.

Este notorio incremento se produjo debido al mayor requerimiento de oferta en el sur del país, que no pudo ser atendida por fuentes más eficientes por problemas de transmisión en la interconexión del sistema centro-norte con el sur, optándose por operar con la C.T Puerto Bravo (616 MW de potencia instalada).

Ilustración 110: PARTICIPACIÓN DE COMBUSTIBLES EN USO PROPIO (ENERGÍAS PRIMARIAS Y SECUNDARIAS)

Ilustración 111: EVALUACIÓN DEL CONSUMO DE DIESEL (UNIDAD: 10³ gal)

Fuente: Elaboración Propia / Reporte de Combustibles DGE
Fuel Oil (Petróleo Residual)

La evolución histórica de este combustible muestra la sustitución de este recurso por el de gas natural, sobre todo en las centrales térmicas del mercado eléctrico, alcanzándose sus valores más bajos entre el 2013 al 2015.

Asimismo, se observa en el 2017, una disminución del 31% respecto al año anterior, producto del mayor despacho hídrico y también a consecuencia de la aplicación del Decreto Supremo N° 111-2016-EF que incremento el monto fijo del Impuesto Selectivo al Consumo aplicable al Petróleo Residual 6 y 500 en aproximadamente 74%.

Ilustración 112: EVALUACIÓN DEL CONSUMO DE FUEL OIL

(UIDAD: 10³ gal)

(Fuente: Elaboración Propia / Reporte de Combustibles DGE)

Gas Natural

El combustible que ha alcanzado mayor relevancia en los últimos 15 años, es el Gas Natural, producto de la explotación del gas de Camisea, creciendo anualmente en 14% desde año 2004 hasta el 2017. En relación al comportamiento del 2017 respecto al año anterior, se observa una disminución en el consumo de gas en el orden del 17%, esto se dio principalmente a consecuencia del mayor incremento del recurso hídrico en la generación de centrales hidroeléctricas.

De otro lado, en el 2017 se da el mejor aprovechamiento del gas por ganancia de eficiencia, con la entrada en operación de la C.T. Chilca 2 de Ciclo combinado de 111 MW de potencia instalada, la cual ingresó en los últimos días del 2016.
10.1.6. Consumos Propios

Durante el año 2017, el consumo de energía eléctrica en las operaciones propias de las centrales de generación eléctrica fue de 709,5 GWh, el cual tuvo una disminución del 13%, respecto al año anterior.

10.1.7. Pérdidas de Transformación

Las pérdidas por transformación, corresponden a la diferencia entre la energía eléctrica obtenida de las centrales eléctricas y la energía de entrada a los mismos, dichas pérdidas alcanzaron en el 2017 el valor de 157 098 TJ, el cual representa una disminución del 6% respecto a las reportadas en 2016. Con ello, la eficiencia promedio de los centros de transformación, alcanzó un valor de 55%.

Asimismo, las pérdidas de transformación son mayores en las centrales eléctricas de generación para el mercado eléctrico respecto a las centrales eléctricas de generación para uso propio, esto se debe a que la generación en el mercado eléctrico es más eficiente y se sustenta sobre la base de hidroenergía y gas natural, mientras que las centrales de uso propio (autoproductores) se basan en el diesel y bagazo.

<table>
<thead>
<tr>
<th>Tabla 36: PÉRDIDAS DE TRANSFORMACIÓN (TJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrales Eléctricas</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>Mercado Eléctrico</td>
</tr>
<tr>
<td>Uso Propio</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
10.1.8. **Consumo Final por Sectores**

El consumo final se orienta a satisfacer la demanda de energía eléctrica de los sectores: residencial, comercial, público, industrial, transporte, minero metalúrgico, agropecuario, agroindustrial y finalmente pesquería. Al respecto, en el 2017, el sector predominante es el minero metalúrgico y el industrial, es decir son las actividades productivas los mayores demandantes, por lo que, el crecimiento de estos sectores no solo impacta en el crecimiento del PBI, sino en la ampliación y reforzamiento de la oferta de energía eléctrica a través de fuentes energéticas eficientes.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Consumo (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residencial</td>
<td>9573,4</td>
</tr>
<tr>
<td>Comercial</td>
<td>6741,1</td>
</tr>
<tr>
<td>Público</td>
<td>2106,6</td>
</tr>
<tr>
<td>Transportes</td>
<td>53,1</td>
</tr>
<tr>
<td>Agropecuario y Agroindustrial</td>
<td>1015,9</td>
</tr>
<tr>
<td>Pesquería</td>
<td>258,5</td>
</tr>
<tr>
<td>Minero Metalúrgico</td>
<td>14946,3</td>
</tr>
<tr>
<td>Industrial</td>
<td>11769,9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>46464,8</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

En relación a la participación energética al 2017, los sectores más intensivos en consumo lo constituyen; el sector residencial (21%), comercial y público (17%), industrial (25%), y el minero metalúrgico (32%). Estos sectores acumulan aproximadamente el 91% del consumo total de energía eléctrica del país, tal como se puede apreciar en la siguiente ilustración:
Cabe mencionar que, en julio de 2011, la Línea 1 del Metro de Lima (Tren Eléctrico), inició sus operaciones con 21,48 km de recorrido, desde el Cercado de Lima hasta el distrito de Villa El Salvador, actualmente se extiende hasta San Juan de Lurigancho, reportando consumo de energía eléctrica en el sector transporte, si bien su consumo es muy pequeño, se espera que los próximos años se incremente con la ampliación de vagones de la línea 1 y la entrada del proyecto de la línea 2 que se vienen ejecutando en el país.

Respecto al tipo de mercado eléctrico, se observa que los clientes libres (productivos), son los mayores consumidores de energía eléctrica a pesar de ser un número pequeño, mientras que los usuarios regulados (principalmente Residencial y Comercial) de gran cantidad en el mercado, presentan consumos específicos menores.

Analizando el histórico de la demanda de energía eléctrica, en los últimos 06 años se observa el mayor crecimiento en el Sector Minero Metalúrgico, si bien en el 2017 hubo una desaceleración del crecimiento, se espera su recuperación en el 2018. Así mismo, con la iniciativa privada en el sector minero, se espera en el corto plazo la ejecución de nuevos proyectos mineros que dinamizará el sector eléctrico. De otro lado, el sector residencial evoluciona vegetativamente ampliando la cobertura eléctrica.
10.1.9. Matriz y Flujo del Balance de Energía Eléctrica

En esta sección se presenta la matriz y el flujo del Balance de Energía Eléctrica al nivel nacional, desde su origen hasta su destino final en los diferentes sectores. La matriz del balance se basa en un conjunto de relaciones de equilibrio que contabilizan la energía que se produce, la que se intercambia con el exterior, la que se transforma, la de consumo propio, la de pérdidas y la que se destina a los sectores.

La matriz considera las fuentes de energía primaria y secundaria descritas en las secciones anteriores, mostradas en columnas, mientras que los procesos que generan los flujos de la energía se muestran en filas. En la tabla 10, se muestra la matriz de energía eléctrica correspondiente al año 2017 en unidades originales, mientras que en la tabla 11, se muestra en terajoules.

Finalmente, para una mejor comprensión de los flujos energéticos y de la estructura general del balance, en la ilustración 97, se presenta el Diagrama de Flujos o Sankey de la energía eléctrica para el periodo 2017.
Tabla 38: BALANCE NACIONAL DE ENERGÍA ELÉCTRICA: 2017
(UNIDADES ORIGINALES)

<table>
<thead>
<tr>
<th>ENERGÍA PRIMARIA</th>
<th>ENERGÍA SECUNDARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón Mineral 10^3 ton</td>
<td>Bagazo 10^3 ton</td>
</tr>
<tr>
<td>2 279.8</td>
<td>36 343.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA Planeamiento Energético</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Producción</td>
</tr>
<tr>
<td>2. Importación</td>
</tr>
<tr>
<td>3. Variación de Inventario</td>
</tr>
<tr>
<td>4. OFERTA TOTAL</td>
</tr>
<tr>
<td>5. Exportación</td>
</tr>
<tr>
<td>6. No Aprovechada</td>
</tr>
<tr>
<td>7. Transferencias</td>
</tr>
<tr>
<td>7. OFERTA INTERNA BRUTA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TRANSFORMACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Total Transformación</td>
</tr>
<tr>
<td>Coquerías y Altos Hornos</td>
</tr>
<tr>
<td>Carboneras</td>
</tr>
<tr>
<td>Refinerías</td>
</tr>
<tr>
<td>Plantas de Gas</td>
</tr>
<tr>
<td>Centrales Eléctricas (Mercado Eléctrico)</td>
</tr>
<tr>
<td>Centrales Eléctricas (Uso Propio)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSUMO FINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. CONSUMO FINAL TOTAL</td>
</tr>
<tr>
<td>12.1 Consumo Final No Energético</td>
</tr>
<tr>
<td>Residencial</td>
</tr>
<tr>
<td>Comercial</td>
</tr>
<tr>
<td>Pueblo</td>
</tr>
<tr>
<td>Transportes</td>
</tr>
<tr>
<td>Agropecuario y Agroindustrial</td>
</tr>
<tr>
<td>Pesquería</td>
</tr>
<tr>
<td>Minero Metalúrgico</td>
</tr>
<tr>
<td>Industrial</td>
</tr>
<tr>
<td>Dirección General de Eficiencia Energética</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Planeamiento Energético</td>
</tr>
</tbody>
</table>

1. Producción	9 365.7		9 365.7
2. Importación	14 308.1		130 771.4
3. Variación de Inventarios	1 186.4		558.0
Total de Producción	150 686.3		59.7
OFERTA	14 308.1		130 771.4
4. OFERTA TOTAL	9 365.7		59.7
5. Exportación	3 862.5		59.7
6. No Aprovechada	1 186.4		59.7
7. Transferencias	390.6		59.7
OFERTA INTERNA BRUTA	160 052.0		59.7

TRANSFORMACIÓN			
8. Total Transformación	(9 365.7)		(15 231.6)
Coquerías y Altos Hornos	(14 308.1)		(15 231.6)
Carboneras	(130 771.4)		(15 231.6)
Refinerías	(1 186.4)		(15 231.6)
Plantas de Gas	(3862.5)		(15 231.6)
Centrales Eléctricas (Mercado Eléctrico)	(390.6)		(15 231.6)
Centrales Eléctricas (Uso Propio)	(15 817.9)		(15 231.6)
Total Transformación	(144 066.7)		(15 231.6)
Pérdida Transformación	(9 947.0)		(15 231.6)
Consumo Propio Sector Energía	(155 476.4)		(15 231.6)
10. Pérdidas (transp., distr. y almac.)	(1 033.4)		(15 231.6)
11. Ajustes	(153.0)		(15 231.6)
CONSUMO FINAL TOTAL	(15 231.6)		(15 231.6)

CONSUMO FINAL			
12.1 Consumo Final No Energético			
Residencial	34 447.4		34 447.4
Comercial	24 256.1		24 256.1
Público	7 580.1		7 580.1
Transportes	191.1		191.1
Agropecuario y Agroindustrial	3 655.5		3 655.5
Pesquería	930.1		930.1
Minero Metalúrgico	53 780.2		53 780.2
Total	167 191.5		167 191.5
Ilustración 119: DIAGRAMA DE FLUJO DEL BALANCE NACIONAL DE ENERGÍA ELÉCTRICA: 2017
(UNIDAD: TJ)
10.2. BALANCE DE BIOMASA Y RESIDUOS RENOYABLES Y NO RENOVABLES

El consumo de leña sigue siendo significativo en la matriz de consumo final de energía. En el año 2017, la producción total estimada de leña fue de 6 731 x 106 kg. Esta cifra ha sido obtenida a partir del consumo de la leña y del carbón vegetal. Asimismo, el consumo estimado de leña fue 6 004 x 106 kg., de los cuales el sector residencial representó el 81,9%. Cabe señalar que la participación del sector residencial en el consumo de leña durante el 2016 fue mayor. Le sigue, en consumo, el sector industrial, con el 13, 7% en donde destaca su uso en las ladrilleras y alfarerías y el sector comercial, en el tercer lugar, con 4,1% destacándose la utilización de leña en restaurantes y panaderías principalmente en los poblados de la sierra del país.

10.2.1. Matriz y Flujo del Balance de Biomasa y Residuos

Tabla 40: MATRIZ DE LA BIOMASA

<table>
<thead>
<tr>
<th>UNIDADES ORIGINALES</th>
<th>REPÚBLICA DEL PERÚ</th>
<th>LEÑA</th>
<th>BOSTA Y YARETA</th>
<th>BAGAZO</th>
<th>CARBÓN VEGETAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA</td>
<td>106kg</td>
<td>106kg</td>
<td>106kg</td>
<td>106kg</td>
<td></td>
</tr>
<tr>
<td>1. PRODUCCIÓN</td>
<td>6 731</td>
<td></td>
<td></td>
<td></td>
<td>3 124</td>
</tr>
<tr>
<td>2. IMPORTACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>3. VARIACIÓN DE INVENTARIOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. OFERTA TOTAL</td>
<td>6 731</td>
<td>350</td>
<td></td>
<td>3 124</td>
<td></td>
</tr>
<tr>
<td>5. EXPORTACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. NO APROVECHADA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. OFERTA INTERNAL BRUTA</td>
<td>6 731</td>
<td>350</td>
<td></td>
<td>3 124</td>
<td></td>
</tr>
<tr>
<td>8. TOTAL TRANSFORMACIÓN</td>
<td>(727)</td>
<td></td>
<td>(2 280)</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>8.1 COQUERÍAS Y ALTOS HORNOS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2 CARBONERAS</td>
<td>(727)</td>
<td></td>
<td></td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>8.3 REFINERÍAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4 PLANTAS DE GAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5 CENTRALES ELEC. M.ELéCTRICO</td>
<td></td>
<td></td>
<td>(558)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6 CENTRALES ELEC. U. PROPIO</td>
<td></td>
<td></td>
<td>(1 711)</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>9. CONSUMO PROPIO SEC. ENERGÍA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>10. PERDIDAS(TRANS., DIST. Y ALM.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. AJUSTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. CONSUMO FINAL TOTAL</td>
<td>6 004</td>
<td>350</td>
<td>845</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>12.1 CONSUMO FINAL NO ENERGÉTICO</td>
<td></td>
<td></td>
<td></td>
<td>413</td>
<td></td>
</tr>
<tr>
<td>12.2 CONSUMO FINAL ENERGÉTICO</td>
<td>6 004</td>
<td>350</td>
<td>432</td>
<td>161.5</td>
<td></td>
</tr>
<tr>
<td>12.2.1 RESIDENCIAL</td>
<td>4 917</td>
<td>350</td>
<td></td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>12.2.2 COMERCIAL</td>
<td>244</td>
<td></td>
<td></td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>12.2.3 PÚBLICO</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2.4 TRANSPORTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2.5 AGROECUARDO Y AGROIND.</td>
<td>6</td>
<td></td>
<td>432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2.6 PESQUERÍA</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2.7 MINERO METALÚRGICO</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.2.8 INDUSTRIAL</td>
<td>828</td>
<td></td>
<td></td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>12.2.9 CONSUMO NO IDENTIFICADO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas Reportadas de la DGE
10.3. BALANCE DE ENERGÍAS RENOVABLES

El Decreto Legislativo 1002 (D. L. 1002), decreto legislativo de promoción de la inversión para la generación de electricidad con el uso de energías renovables, entiende como recursos energéticos renovables a los recursos tales como biomasa, eólico, solar, geotérmico y mareomotriz. La definición de recurso energético renovable (RER) del D.L. 1002 está más ligada a la tecnología que transforma el RER que a las características propias del recurso, sobre todo en la consideración de que la energía hidráulica es RER cuando la capacidad instalada no sobrepasa de los 20 MW. El D.L. 1002 tampoco define el tipo biomasa que debe considerarse RER.

En el desarrollo del balance de energía, se consideró como RER a los recursos descritos en el D.L. 1002 con la excepción de las centrales hidroeléctricas con capacidades menores a 20 MW porque su discusión se encuentra incluida en el sector electricidad.

En la Ilustración 98, representa el potencial RER de los principales RER incluyendo el potencial hidroeléctrico

Ilustración 120: POTENCIAL TÉCNICO PARA APROVECHAMIENTO RER PARA GENERACIÓN DE ELECTRICIDAD

Fuente: Elaboración Propia / Estadísticas Reportadas de la DGE
10.3.1. Esquema Energético

El uso de los RER en el Perú es milenario; sin embargo, la falta de datos y de metodologías apropiadas para cuantificar la energía producida o aprovechada hace que muchos de los usos tradicionales de las energías renovables no sean considerados en el desarrollo de los balances energéticos.

Para el caso de la energía solar, se considera principalmente dos transformaciones de energía: la transformación de energía solar a electricidad a través de sistemas fotovoltaicos y la transformación de energía solar a energía térmica para calentamiento de agua.

Con respecto a la electricidad fotovoltaica, esta puede ser generada en centrales de generación de electricidad para ser usada en el mercado eléctrico o en instalaciones donde la electricidad es consumida en el sitio mismo de producción. La principal diferencia entre ambas maneras de llevar electricidad a la demanda es la existencia de pérdidas por transmisión y de distribución en la generación centralizada.

Ilustración 121: ESQUEMA DE LA CADENA ENÉRGICA DE ENERGÍA SOLAR

Fuente: Elaboración Propia

Con respecto al uso de los demás RER, excluyendo la generación hidráulica, se considera que el principal uso de los mismos es la generación de electricidad lo cual es representado en la siguiente ilustración.
10.3.2. Energía Primaria

Si bien es cierto que la energía primaria proviene de los recursos naturales (por ejemplo: radiación solar, vientos, etc.) y que ésta sufre de transformaciones para convertirse en energía eléctrica o térmica, en el presente balance se consideró que el valor de la energía primaria es igual a la suma de los valores de la energía eléctrica o térmica producida según las recomendaciones del Manual de Balances de Energía Útil 2017 (OLADE). En ese sentido el proceso de transformación de energía primaria a energía secundaria (electricidad) se asume 100% eficiente. Esta recomendación es aceptable al considerar que la eficiencia de la transformación de energía del recurso natural a energía secundaria es altamente dependiente no sólo de la tecnología sino también de la localización de las unidades de generación, por lo cual presentar un valor promedio de eficiencia por tecnología no sería representativo del proceso mismo de transformación.

En la siguiente tabla se muestra la generación de energía eléctrica y térmica del 2017 con fuentes primarias en unidades originales.

<table>
<thead>
<tr>
<th>Recurso</th>
<th>Mercado Eléctrico</th>
<th>Uso Propio (Electricidad)</th>
<th>Uso Propio (No Electricidad)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eólico</td>
<td>3 864 356,17</td>
<td>0,00</td>
<td>0,00</td>
<td>3 864 356,17</td>
</tr>
<tr>
<td>Solar</td>
<td>1 033 921,23</td>
<td>153 082,13</td>
<td>1 382 935,28</td>
<td>2 569 938,64</td>
</tr>
<tr>
<td>Bagazo</td>
<td>518 348,17</td>
<td>896 349,28</td>
<td>0,00</td>
<td>1 414 697,45</td>
</tr>
<tr>
<td>Biogás</td>
<td>150 978,76</td>
<td>0,00</td>
<td>0,00</td>
<td>150 978,76</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Solar

El uso energético de la radiación solar en el Perú es antiguo. Algunos productos agrícolas (por ejemplo café, ajíes, etc.) son secados al aire libre como técnica de conservación. También se han instalado proyectos pilotos para estudiar el uso de la energía solar pasiva para ayudar a la climatización de viviendas en zonas alejadas del país. Si bien estos usos de la energía solar son comunes, actualmente no se cuenta con datos que permitan cuantificar su impacto, aunque se consideran que estos usos no son significativoas por lo que no son tomados en cuenta para el desarrollo del presente documento.

Se considera principalmente dos usos de la energía solar; la producción de electricidad a través de módulos fotovoltaicos y la producción de energía térmica para calentar agua.

Para calcular el incremento de las instalaciones solares fotovoltaicos durante el año 2017, se tomaron los datos de las importaciones de módulos solares fotovoltaicos, a los cuales se descontaron los adquiridos para proyectos como las C.S. Rubí o Intipampa y las instalaciones rurales de Ergon en el marco del contrato de inversión para el suministro de energía eléctrica de RER en áreas no conectadas a RER.

En el caso de la energía solar térmica para calentamiento de agua, se consideró las importaciones de tubos de vacío y de termas solares enteras además de una pequeña producción de termas solares nacionales. En el caso de no contarse con las definiciones del tamaño de la terma se asumió un calentador solar de agua de 120 litros de agua.

Los resultados del Balance de Energía Solar al 2017 se presenta en la siguiente tabla:
Se observa que la producción de la energía solar fotovoltaica en el 2017 fue 330 GWh lo cual es un incremento de 19.19 % con respecto al 2016. La producción de energía solar térmica para calentamiento de agua en el 2017 fue 384 GWh, que es un incremento de 5,00 % con respecto a la producción del año anterior.

La evolución histórica de la generación solar desde el año 2010 es mostrada en la siguiente ilustración:
Si bien, desde el año 2010, la generación de energía solar ha venido incrementándose a razón de 20,41% anuales, desde el ingreso de las centrales solares como consecuencia de las subastas RER, la generación fotovoltaica de electricidad ha crecido dinámicamente a razón de 67,55% anual mientras que la generación térmica solar creció a razón de 10,94%. Esta evolución se nota más claramente en la siguiente ilustración en donde se aprecia en el año 2010 el uso de la energía solar era principalmente para calentamiento de agua y que para el año 2017, la generación fotovoltaica es próxima a la generación solar térmica.

El 87,08 % de la generación eléctrica fotovoltaica fue utilizada en el mercado eléctrico, mientras que el 12,92% restante se utilizó en instalaciones para uso propio o autoconsumo, es decir, instalaciones aisladas. En estas últimas se estimaron la generación de los sistemas de electrificación rural instalados por Ergon, la generación...
de los Sistemas de Adinelsa, además de las importaciones de módulos PV mayores a 45 W.

Hasta el 31 de Diciembre del 2017 habían 5 centrales solares en operación comercial: Tacna Solar, Panamericana Solar, Moquegua FV, Repartición y Majes Solar 20 T. Adicionalmente, se consideró la producción de la central solar Rubí, la más grande de las adjudicadas en las subastas RER hasta la fecha, a pesar de que durante el 2017 operó a modo de prueba.

Ilustración 125: EVOLUCIÓN DE ENERGÍA FOTOVOLTAICA DESTINADA PARA MERCADO ELÉCTRICO VS. PARA USO PROPIO (GWh)

Fuente: Elaboración Propia

En la ilustración anterior se aprecia que la tendencia de crecimiento de la producción eléctrica a través de sistemas fotovoltaicos no sólo se presenta en los sistemas de generación de electricidad que fueron licitados a través de la susbasta RER sino también en los sistemas aislados y responde a la reducción de costos de estas tecnologías.

Eólica

En el caso del uso del viento en el Perú, existen instalaciones de molinos de vientos pequeños para bombeo de agua se encuentran en la costa del país. Este uso del viento también es difícil de cuantificar por lo cual no se consideró parte del presente balance.

En el 2017, se consideró la producción de cuatro centrales eólicas: Marcona, Cuspinique, Talara, y Tres Hermanas, las mismas que se desarrollaron en el marco de las subastas RER. Adicionalmente se consideró la producción de las plantas eólicas Malabrigo y San Juan de Marcona.
Tabla 43: BALANCE DE ENERGÍA EÓLICA 2017

Unidades originales

<table>
<thead>
<tr>
<th>REPÚBLICA DEL PERÚ</th>
<th>EÓLICA</th>
<th>ENERGIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINISTERIO DE ENERGÍA Y MINAS</td>
<td>AEROGENERADOR</td>
<td>ELECTR.</td>
</tr>
<tr>
<td>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA</td>
<td>GWh</td>
<td>GWh</td>
</tr>
</tbody>
</table>

1. PRODUCCIÓN 1073
2. IMPORTACIÓN
3. VARIACIÓN DE INVENTARIOS
4. OFERTA TOTAL 1073
5. EXPORTACIÓN
6. NO APROVECHADA
7. OFERTA INTERNA BRUTA 1073
8. TOTAL TRANSFORMACIÓN (1 073) 1 073
8.1 COQUERÍAS Y ALTOS HORNOS
8.2 CARBONERAS
8.3 REFINERÍAS
8.4 PLANTAS DE GAS
8.5 CENTRALES ELEC. M.Eléctrico (1 073) 1073
8.6 CENTRALES ELEC. U.Propio
9. CONSUMO PROPIO SEC. ENERGÍA
10. PÉRDIDAS (TRANS., DIST. Y ALM.)
11. AJUSTES
12. CONSUMO FINAL TOTAL
12.1 CONSUMO FINAL NO ENERGÉTICO
12.2 CONSUMO FINAL ENERGÉTICO
12.2.1 RESIDENCIAL
12.2.2 COMERCIAL
12.2.3 PÚBLICO
12.2.4 TRANSPORTE
12.2.5 AGROPECUARIO Y AGROIND.
12.2.6 PESQUERÍA
12.2.7 MINERO METALÚRGICO
12.2.8 INDUSTRIAL
12.2.9 CONSUMO NO IDENTIFICADO

Elaboración: DGEE-MEM
Si bien en el último año no hubo un crecimiento significativo de energía eólica generada, debido principalmente a que no ingresaron nuevas centrales, se espera un incremento sustancial para el 2018 con el ingreso de la central Wayra I y de las futuras centrales Huambo y Duna.

Biogás

En el caso del Biogás, la generación que se reportó en 2017 provino de la generación de las centrales térmicas a biogás de Huaycoloro y la Gringa V. La generación del 2017 de 41.9 GWh es 18% menor a lo producido en el 2016, 51.2 GWh. Sin embargo, existen plantas adjudicadas a través de las Subastas RER, C.T. Callao y C.T. Doña Catalina, cuyas entradas en operación son de esperarse en el futuro, por lo que se espera que esta generación incremente en el tiempo.
10.3.3. **Centrales de Generación**

Las Centrales de generación solar fotovoltaica que estuvieron operativas fueron las siguientes:

Tabla 44: CENTRALES SOLAR FOTOVOLTAICA

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Ubicación</th>
<th>Producción MWh</th>
<th>Potencia MW</th>
<th>Tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUBI</td>
<td>Moquegua</td>
<td>61 373</td>
<td>144</td>
<td>Cristalino-Seguidor</td>
</tr>
<tr>
<td>MAJES SOLAR 20T</td>
<td>Arequipa</td>
<td>44 040</td>
<td>20</td>
<td>Thin-film-Fijo</td>
</tr>
<tr>
<td>REPARTICION</td>
<td>Arequipa</td>
<td>40 310</td>
<td>20</td>
<td>Thin-film-Fijo</td>
</tr>
<tr>
<td>MOQUEGUA FV</td>
<td>Moquegua</td>
<td>46 027</td>
<td>16</td>
<td>Cristalino-Seguidor</td>
</tr>
<tr>
<td>PANAMERICANA SOLAR</td>
<td>Moquegua</td>
<td>49 641</td>
<td>20</td>
<td>Cristalino-Seguidor</td>
</tr>
<tr>
<td>TACNA SOLAR</td>
<td>Tacna</td>
<td>45 810</td>
<td>20</td>
<td>Cristalino-Seguidor</td>
</tr>
</tbody>
</table>

TOTAL PRODUCCIÓN: 287 200

Las Centrales de generación solar eólica que estuvieron operativas fueron las siguientes:

Tabla 45: CENTRALES ÉOLICAS

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Ubicación</th>
<th>Producción MWh</th>
<th>Potencia MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARCONA</td>
<td>Ica</td>
<td>168 609</td>
<td>32,00</td>
</tr>
<tr>
<td>CUSPINIQUE</td>
<td>La Libertad</td>
<td>279 110</td>
<td>80,00</td>
</tr>
<tr>
<td>TALARA</td>
<td>Piura</td>
<td>124 918</td>
<td>30,00</td>
</tr>
<tr>
<td>TRES HERMANAS</td>
<td>Ica</td>
<td>499 568</td>
<td>97,15</td>
</tr>
</tbody>
</table>

TOTAL PRODUCCIÓN: 1 072 206

Las Centrales de generación de biogás y biomasa, se considero bagazo, que estuvieron operativas fueron las siguientes:

Tabla 46: CENTRALES A BIOGÁS Y BIOMASA

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Ubicación</th>
<th>Producción MWh</th>
<th>Potencia MW</th>
<th>Tecnología</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.T. PARAMONGA</td>
<td>LIMA</td>
<td>81520</td>
<td>23</td>
<td>Bagazo</td>
</tr>
<tr>
<td>C.T. AGROAURORA</td>
<td>Piura</td>
<td>167</td>
<td>37,5</td>
<td>Bagazo</td>
</tr>
<tr>
<td>C.T. CAÑA BRAVA</td>
<td>Piura</td>
<td>62298</td>
<td>10</td>
<td>Bagazo</td>
</tr>
<tr>
<td>C.T. LA GRINGA V</td>
<td>Lima</td>
<td>12299</td>
<td>97,15</td>
<td>Biogás</td>
</tr>
<tr>
<td>C.T. HUAYCOLORO</td>
<td>Lima</td>
<td>29640</td>
<td>126</td>
<td>Biogás</td>
</tr>
<tr>
<td>C.T. CARTAVIO</td>
<td>La Libertad</td>
<td>45630</td>
<td>9,80</td>
<td>Bagazo</td>
</tr>
<tr>
<td>C.T. CARTAVIO</td>
<td>La Libertad</td>
<td>141172</td>
<td>37,00</td>
<td>Bagazo</td>
</tr>
<tr>
<td>C.T. TRUPAL</td>
<td>La Libertad</td>
<td>33617</td>
<td>15</td>
<td>Bagazo</td>
</tr>
<tr>
<td>C.T. TURBO GENERADOR 1-5</td>
<td>La Libertad</td>
<td>28567</td>
<td>18,50</td>
<td>Bagazo</td>
</tr>
</tbody>
</table>

TOTAL PRODUCCIÓN: 434 910
10.4. BALANCE DE GAS NATURAL Y LÍQUIDOS DE GAS NATURAL

10.4.1. Esquema Energético

Con el propósito de clarificar los flujos de la cadena de gas natural, desde la entrada del recurso (energía primaria) hasta el consumo al usuario final, se muestra de manera esquemática el proceso transformación en las plantas de procesamiento de gas natural y plantas de fraccionamiento de líquidos de gas natural; así como las pérdidas, exportaciones, consumos propios, linepack y el consumo final en los distintos sectores.

Ilustración 128: ESQUEMA DE LA CADENA DE GAS NATURAL

Fuente: Elaboración Propia

* Para efectos del BNE se está considerando a los destilados medios como diesel, dado que son utilizados para la producción del mismo.

10.4.2. Reservas y Energía Primaria

10.4.2.1. Gas Natural

Reservas

Las reservas probadas de gas natural a diciembre de 2016 se estimaron en 455.6×10^9 m3 (16.09 TCF). Cabe resaltar que estas reservas probadas con respecto al 2015 incrementaron en 2 TCF, debido principalmente a la producción del año 2016, reestimación de reservas probadas y recategorización de las reservas posibles a probadas en los lotes 58 y 57.

<table>
<thead>
<tr>
<th>ZONA</th>
<th>PROBADAS</th>
<th>PROBABLES</th>
<th>POSSIBLES</th>
<th>CONTINGENTES</th>
<th>PROSPECTIVAS</th>
<th>TOTAL RES.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desarrolladas</td>
<td>No Desarrolladas</td>
<td>Total</td>
<td>Probadas</td>
<td></td>
<td>Contingentes</td>
</tr>
<tr>
<td>Fase de explotación</td>
<td>16.7</td>
<td>0.2</td>
<td>16.9</td>
<td>-</td>
<td>2.5</td>
<td>1,182.0</td>
</tr>
<tr>
<td>Zócalo</td>
<td>203.9</td>
<td>95.6</td>
<td>349.5</td>
<td>70.3</td>
<td>95.5</td>
<td>494.0</td>
</tr>
<tr>
<td>Noroeste</td>
<td>7,876.6</td>
<td>5,765.9</td>
<td>13,644.5</td>
<td>1,216.8</td>
<td>728.1</td>
<td>3,261.0</td>
</tr>
<tr>
<td>Selva</td>
<td>2,080.0</td>
<td>2,080.0</td>
<td>570.0</td>
<td>828.0</td>
<td>190.0</td>
<td>8,184.0</td>
</tr>
<tr>
<td>Total</td>
<td>8,149.2</td>
<td>7,941.7</td>
<td>16,090.9</td>
<td>1,857.1</td>
<td>1,654.1</td>
<td>5,127.0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Libro Anual de Recursos de Hidrocarburos

En la siguiente ilustración se muestran los valores de estimación histórica de las reservas y recursos de gas natural publicado en los Libros Anuales de Recursos de Hidrocarburos. Es preciso señalar, que los recursos provienen principalmente de una reclasificación de reservas posibles a recursos a partir del año 2009.

Ilustración 129: RESERVAS Y RECURSOS DE GAS NATURAL 2004-2016 (UNIDAD: BCF)

Fuente: Elaboración Propia / Libro Anual de Recursos de Hidrocarburos

Produción de Gas Natural

Durante el año 2017, la producción de campo de Gas Natural, de los yacimientos de gas asociado y no asociado, fue de 18,907 x 10^6 m³; esta producción fue menor en 2.1 % respecto al año anterior (Ver Tabla 48), influenciado por la caída de producción en los lotes 57 y 88 que son los mayores productores de gas natural del país.

El gas natural se puede encontrar en los reservorios en dos formas: como "gas asociado", cuando está en contacto o disuelto en el petróleo crudo y como gas "no asociado", cuando no hay presencia de petróleo crudo.
En el año 2017, la producción de gas asociado fue de 1.456×10^6 m3, mostrando una disminución de 2.7%, mientras que la producción de gas no asociado fue de 17.451×10^6 m3, disminuyendo en 2.0 % respecto al año anterior.

Tabla 48: PRODUCCIÓN DE GAS NATURAL

(UNIDAD: 10^6 m3)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GMP</td>
<td></td>
<td>233</td>
<td>239</td>
<td>239</td>
<td>258</td>
<td>255</td>
<td>267</td>
<td>279</td>
<td>330</td>
<td>379</td>
<td>381</td>
<td>455</td>
<td>472</td>
<td>492</td>
<td>524</td>
<td>582</td>
<td>564</td>
<td>568</td>
<td>463</td>
</tr>
<tr>
<td>PETROMONT</td>
<td>I</td>
<td>9</td>
<td>13</td>
<td>18</td>
<td>28</td>
<td>25</td>
<td>29</td>
<td>33</td>
<td>38</td>
<td>42</td>
<td>38</td>
<td>45</td>
<td>49</td>
<td>56</td>
<td>69</td>
<td>130</td>
<td>101</td>
<td>87</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>10</td>
<td>13</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>GMP</td>
<td>III</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>23</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td>36</td>
<td>34</td>
<td>38</td>
<td>51</td>
<td>61</td>
<td>49</td>
<td>56</td>
<td>34</td>
<td>42</td>
<td>35</td>
<td>27</td>
</tr>
<tr>
<td>PETROMONT</td>
<td>IV</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>19</td>
<td>17</td>
<td>14</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>GMP</td>
<td>V</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SAPET</td>
<td>VIII</td>
<td>43</td>
<td>49</td>
<td>51</td>
<td>59</td>
<td>65</td>
<td>48</td>
<td>39</td>
<td>33</td>
<td>32</td>
<td>29</td>
<td>34</td>
<td>32</td>
<td>35</td>
<td>38</td>
<td>39</td>
<td>36</td>
<td>38</td>
<td>31</td>
</tr>
<tr>
<td>UNIFETRO</td>
<td>IX</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CNPC</td>
<td>X</td>
<td>145</td>
<td>144</td>
<td>133</td>
<td>134</td>
<td>137</td>
<td>137</td>
<td>157</td>
<td>193</td>
<td>224</td>
<td>215</td>
<td>223</td>
<td>228</td>
<td>246</td>
<td>221</td>
<td>196</td>
<td>210</td>
<td>218</td>
<td>210</td>
</tr>
<tr>
<td>OLYMPIC</td>
<td>XII</td>
<td></td>
</tr>
<tr>
<td>PETROMONT</td>
<td>XV</td>
<td></td>
</tr>
<tr>
<td>GMP</td>
<td></td>
</tr>
<tr>
<td>BICALO</td>
<td></td>
<td>657</td>
<td>676</td>
<td>675</td>
<td>696</td>
<td>696</td>
<td>677</td>
<td>668</td>
<td>681</td>
<td>746</td>
<td>770</td>
<td>766</td>
<td>879</td>
<td>901</td>
<td>1,073</td>
<td>1,068</td>
<td>1,016</td>
<td>1,002</td>
<td></td>
</tr>
<tr>
<td>BPZ</td>
<td>Z-1</td>
<td></td>
</tr>
<tr>
<td>SAVIA</td>
<td>Z-2B</td>
<td>657</td>
<td>676</td>
<td>675</td>
<td>696</td>
<td>696</td>
<td>677</td>
<td>668</td>
<td>681</td>
<td>679</td>
<td>710</td>
<td>675</td>
<td>755</td>
<td>798</td>
<td>777</td>
<td>717</td>
<td>693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SELVA</td>
<td></td>
<td>129</td>
<td>157</td>
<td>164</td>
<td>159</td>
<td>140</td>
<td>116</td>
<td>113</td>
<td>107</td>
<td>102</td>
<td>88</td>
<td>95</td>
<td>86</td>
<td>80</td>
<td>79</td>
<td>60</td>
<td>16</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>CEPISA</td>
<td></td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>PACIFIC STRATUS</td>
<td></td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>PERENCO</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>PLUSPETROL NORTE</td>
<td>8</td>
<td>31</td>
<td>40</td>
<td>45</td>
<td>38</td>
<td>33</td>
<td>26</td>
<td>22</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>17</td>
<td>15</td>
<td>92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ilustración 130: EVOLUCIÓN DE LA PRODUCCIÓN DE GAS NATURAL

(10^6 m3)

Fuente: Elaboración Propia / Estadísticas Perupetro

ÁREA DE PLANEAMIENTO ENERGÉTICO/DGREE

136
10.4.2.2. Líquidos de Gas Natural

Reservas

Las reservas probadas de líquidos de gas natural a diciembre de 2016 se estimaron en 789 719 x 10^3 BLS. Cabe resaltar que estas reservas probadas con respecto al 2015 incrementaron en 10.6%, debido principalmente a la producción del año 2016, reestimación de reservas probadas y recategorización de las reservas posibles a probadas en los lotes 57.

(UNIDAD: MBLS)

<table>
<thead>
<tr>
<th>ZONA</th>
<th>PROBADAS</th>
<th>PROBABLES</th>
<th>POSIBLES</th>
<th>RECURSOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desarrolladas</td>
<td>No Desarrolladas</td>
<td>Total Probadas</td>
<td>Contingentes</td>
</tr>
<tr>
<td>Fase de explotación</td>
<td>2,366</td>
<td>25</td>
<td>2,391</td>
<td>357</td>
</tr>
<tr>
<td>Zócalo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noroeste</td>
<td>414,863</td>
<td>299,148</td>
<td>714,011</td>
<td>80,280</td>
</tr>
<tr>
<td>Selva</td>
<td>73,317</td>
<td>73,317</td>
<td>32,275</td>
<td>36,045</td>
</tr>
<tr>
<td>Fase de exploración / no operadas</td>
<td>1,000,000</td>
<td>2,000,000</td>
<td>3,000,000</td>
<td>4,000,000</td>
</tr>
<tr>
<td>Areas sin contrato / no operadas</td>
<td>1,048,265</td>
<td>1,048,265</td>
<td>1,048,265</td>
<td>1,048,265</td>
</tr>
<tr>
<td>TOTAL</td>
<td>417,229</td>
<td>372,490</td>
<td>789,719</td>
<td>112,555</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Libro Anual de Recursos de Hidrocarburos

En la siguiente gráfica se muestran los valores de estimación histórica de las reservas y recursos de líquidos de gas natural publicado en los Libro Anual de Recursos de Hidrocarburos. Es preciso señalar, que los recursos provienen principalmente de una reclasificación de reservas posibles a recursos a partir del año 2009.

Ilustración 131: RESERVAS Y RECURSOS DE LÍQUIDOS DE GAS NATURAL 2004-2016
(UNIDAD: MBLS)

Fuente: Elaboración Propia / Libro Anual de Recursos de Hidrocarburos
Producción de Líquidos de Gas Natural

Durante el año 2017, la producción de líquidos de Gas Natural fue de 5 268 x 10^3 m³; esta producción fue menor en 0.04 % respecto al año anterior, influenciado por la caída de producción en los lotes 57 y 88 que son los mayores productores de gas natural del país.

Tabla 50: PRODUCCIÓN DE LÍQUIDOS DE GAS NATURAL
(UNIDAD: 10^3 m³)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AGUAYTIA</td>
<td>31C</td>
<td>226</td>
<td>230</td>
<td>237</td>
<td>234</td>
<td>227</td>
<td>215</td>
<td>193</td>
<td>174</td>
<td>155</td>
<td>155</td>
<td>145</td>
<td>121</td>
<td>156</td>
<td>257</td>
<td>75</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>PLUPETROL</td>
<td>88</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>1,865</td>
<td>2,013</td>
<td>1,859</td>
<td>1,796</td>
<td>2,123</td>
<td>2,768</td>
<td>2,133</td>
<td>2,666</td>
<td>3,647</td>
<td>3,368</td>
<td>2,995</td>
<td>2,921</td>
</tr>
<tr>
<td>REPCEL</td>
<td>57</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>583</td>
<td>1,998</td>
<td>1,941</td>
<td>1,634</td>
<td>2,127</td>
<td>2,215</td>
<td>2,177</td>
<td>1,846</td>
<td>1,937</td>
<td>1,715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL SELVA</td>
<td>226</td>
<td>230</td>
<td>237</td>
<td>234</td>
<td>227</td>
<td>2,080</td>
<td>2,206</td>
<td>2,325</td>
<td>2,528</td>
<td>4,076</td>
<td>3,854</td>
<td>4,949</td>
<td>5,999</td>
<td>5,927</td>
<td>5,229</td>
<td>5,444</td>
<td>5,208</td>
<td></td>
</tr>
<tr>
<td>SAVIA</td>
<td>2,28</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL ZÓCALO</td>
<td>-</td>
<td>32</td>
<td>69</td>
<td>64</td>
<td>74</td>
<td>74</td>
<td>75</td>
<td>68</td>
<td>60</td>
</tr>
<tr>
<td>TOTAL PAÍS</td>
<td>226</td>
<td>230</td>
<td>237</td>
<td>234</td>
<td>227</td>
<td>2,080</td>
<td>2,206</td>
<td>2,133</td>
<td>2,528</td>
<td>4,076</td>
<td>3,854</td>
<td>4,949</td>
<td>5,999</td>
<td>5,927</td>
<td>5,229</td>
<td>5,444</td>
<td>5,208</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas Perupetro

Ilustración 132: EVOLUCIÓN DE LA PRODUCCIÓN DE LÍQUIDOS DE GAS NATURAL
(10^3 m³)

10.4.3. Gas Natural no aprovechado

Se consideran los siguientes rubros:

Gas reinyectado.- Es el gas devuelto al yacimiento a través de los pozos de reinyección a fin de mantener la presión del pozo.

Gas venteado.- Es el gas que escapa directamente al ambiente, sin ser aprovechado como combustible, éste se considera como merma de los procesos de producción del gas natural.

Gas quemado.- Es el gas quemado en antorchas después de ser extraído de los pozos. No es empleado como combustible.
Gas de condensado de reposición, instrumentos y shrinkage.- Consiste en la reducción del volumen inicial de gas natural, como resultado de la condensación de los líquidos del gas natural y el agua asociada.

En el año 2017, el volumen de gas natural no aprovechado fue de $5 \times 10^6 \text{ m}^3$, cifra superior en 14,1 % respecto al año anterior, influenciado principalmente por el incremento del gas reinyectado.

Fuente: Elaboración Propia / Estadísticas Perupetro

Ilustración 133: GAS NATURAL NO APROVECHADO 2017

Ilustración 134: EVOLUCIÓN DEL GAS NATURAL NO APROVECHADO 2017
(UNIDAD: 10³ m³)

Fuente: Elaboración Propia / Estadísticas Perupetro
10.4.4. Infraestructura existente Gas Natural

10.4.4.1. Infraestructura en plantas de procesamiento y fraccionamiento

Las plantas de procesamiento de gas natural (Centros de Transformación) están referidos a las instalaciones en donde se procesa la energía primaria, de tal forma de obtener gas natural seco y líquidos de gas natural para la atención de la demanda, previamente los líquidos son separados en las plantas de fraccionamiento.

En la siguiente tabla se muestra las capacidades instaladas existentes a nivel nacional al 2017 de las unidades operativas de separación de gas natural y fraccionamiento de líquidos de gas natural.

Tabla 51: INFRAESTRUCTURA EXISTENTE DE GAS NATURAL

<table>
<thead>
<tr>
<th>Empresas</th>
<th>Unidades Operativas</th>
<th>Capacidad Instalada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluspetrol Peru Corporation S.A.</td>
<td>Planta de Procesamiento de Gas Natural – Malvinas</td>
<td>1680 MMPCD</td>
</tr>
<tr>
<td></td>
<td>Planta de Fraccionamiento de Líquidos de Gas Natural (LGN) – Pisco</td>
<td>120 MBPD</td>
</tr>
<tr>
<td>Aguaytía Energy del Perú S.R.L.</td>
<td>Planta de Procesamiento de Gas Natural – Curimoná</td>
<td>65 MMPCD</td>
</tr>
<tr>
<td></td>
<td>Planta de Fraccionamiento de LGN – Yarinacocha</td>
<td>4.4 MMPCD</td>
</tr>
<tr>
<td>Graña y Montero Petrolera S.A.</td>
<td>Planta de Procesamiento de Gas Natural – GMP</td>
<td>40 MMPCD</td>
</tr>
<tr>
<td></td>
<td>Planta de Fraccionamiento de LGN – GMP</td>
<td>3 BPD</td>
</tr>
<tr>
<td>Procesadora de Gas Pariñas S.A.C.</td>
<td>Planta Crio genica de Gas Natural</td>
<td>40MMPCD</td>
</tr>
<tr>
<td>Fuente: Elaboración Propia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10.4.4.2. Infraestructura de transporte de gas natural por ductos

A nivel nacional, el gas natural seco es transportado desde las plantas de procesamiento al usuario final a través de gaseos ductos, como gas natural liquefactado o gas natural comprimido.

Tabla 52: INFRAESTRUCTURA DE TRANSPORTE DE GAS NATURAL

<table>
<thead>
<tr>
<th>Empresas</th>
<th>Infraestructura</th>
<th>Origen</th>
<th>Destino</th>
<th>Longitud</th>
<th>Capacidad acumulada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportadora del Gas del Perú - TGP</td>
<td>Ducto principal</td>
<td>Camisea</td>
<td>Lurin</td>
<td>729km</td>
<td>920 MMPCD</td>
</tr>
<tr>
<td></td>
<td>Loop Costa I</td>
<td>Pampa Melchorita</td>
<td>Chilca</td>
<td>105km</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loop Costa II</td>
<td>Chilca</td>
<td>City Gate Lurin</td>
<td>31km</td>
<td></td>
</tr>
<tr>
<td>Perú LNG</td>
<td>Ducto</td>
<td>Chiquintirca</td>
<td>Pampa Melchorita</td>
<td>408km</td>
<td>620MMPCD</td>
</tr>
<tr>
<td>Olimpic Perú Inc.</td>
<td>Ducto</td>
<td>Estación La Casita</td>
<td>Estación Olímpic</td>
<td>33km</td>
<td>11MMPCD</td>
</tr>
<tr>
<td>Aguaytía Energy</td>
<td>Ducto</td>
<td>Aguaytía</td>
<td>CT Aguaytía</td>
<td>146km</td>
<td>55MMPCD</td>
</tr>
<tr>
<td>TGP</td>
<td>Poliducto</td>
<td>Camisea</td>
<td>Pisco</td>
<td>557km</td>
<td>120 MBPD</td>
</tr>
<tr>
<td>Fuente: Elaboración Propia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.4.4.3. Infraestructura en los sistemas de distribución de gas natural

Al 2017 existen dos empresas concesionarias de distribución en operación comercial: la concesión de Lima y El Callao, que está administrada por la empresa Calidda - Gas Natural de Lima y Callao (inició operación comercial en agosto del año 2004) y la concesión de Ica, administrada por la empresa Contugas (inició operación comercial en abril de 2014).

Con la finalidad de expandir el uso de gas natural en algunas regiones del sur y norte, se desarrollaron dos proyectos de masificación de gas natural, los cuales consisten en transportar vía terrestre el gas natural en estado líquido, desde la Planta Melchorita hasta las ciudades por abastecer, donde existen unas estaciones de regasificación del GNL y estaciones de regulación, llevando finalmente el gas por redes de distribución por red de ductos a los usuarios finales. En ese sentido, la concesión del norte (Chimbote, Chiclayo, Trujillo, Huaraz, Cajamarca, Lambayeque y Pacasmayo) es administrada por la empresa Quavi – Gases del Pacífico (inicio operación comercial en diciembre del 2017) y la conexión del sur (Arequipa, Moquegua y Tacna) es administrada por la empresa Gas Natural Fenosa (inició operación comercial en diciembre del 2017).

10.4.5. Ventas de Gas Natural

En el año 2017, las ventas de gas natural reportadas por las empresas productoras fue de 12 942 x 10^6 m³, cifra inferior en 7.56 % respecto al año anterior, influenciado principalmente por las ventas de la empresa Pluspetrol Perú Corporation S.A.

![Ilustración 135: PARTICIPACIÓN DE LAS VENTAS DE GAS NATURAL](image-url)

Fuente: Elaboración Propia / Estadísticas Perupetro
En el año 2017, el gas natural distribuido fue destinado en los siguientes rubros:

- **Consumo doméstico**: Comprende el consumo de gas distribuido por parte del sector residencial de Lima. Asimismo, se incluye a los requerimientos de la población de Ica, la cual es abastecida por la empresa distribuidora de gas natural, Contugas SAC.

- **Consumo Comercial**: Comprende el gas distribuido utilizado el año 2017 a fin de abastecer los requerimientos de los establecimientos comerciales ubicados en las concesiones de Lima e Ica.

- **Consumo Industrial**: Comprende el consumo del grupo de empresas industriales que se conectaron inicialmente (Alicorp, Nestle Perú S.A., Sudamericana de Fibras, Owens Illinois, UNACEM S.A.A, Cerámica San Lorenzo, Cerámica Lima y Corporación Cerámica). Así también, están comprendidas el resto de empresas de manufactura y mineras que posteriormente se conectaron al ducto.

Por otro lado, también se considera el consumo de gas distribuido proveniente de Camisea que es utilizado por parte de las empresas procesadoras de harina de pescado ubicadas en Pisco, en la provincia de Lima. En la zona norte, el gas es procedente de Piura y es comercializado por la empresa Olympic.

- **Consumo Transporte**: Comprende el consumo de los gasocentros ubicados en Lima, Callao e Ica, que se abastecen del gas de Camisea, y también los consumos en las provincias de Piura, Chiclayo, abastecidos con gas natural procedente de la Costa Norte.

- **Consumo para Generación de Energía Eléctrica**: Comprende el consumo demandado en las centrales térmicas como: Empresa Eléctrica de Piura S.A. y SDE Piura SAC. en la zona de la Costa Norte; Aguaytía Energy y Termoselva, ubicadas en la región Ucayali; las centrales de Kalpa Generación S.A., Engie Energía Perú S.A., Enel Generación Perú S.A.A., Termochilca SAC, Orazul Energy Perú S.A., Fénix Power Perú SA, Generación Eléctrica de Atocoango, y...
SDF Energía S.A. en Lima, las centrales de EGASA S.A., EGESUR S.A. y ElectroDunas S.A.A. en Ica, y las centrales utilizadas para el autoabastecimiento de la Planta de Separación de Las Malvinas, de la Planta de Licuefacción de gas natural de Perú LNG.

- **Consumo propio**: Comprende el consumo propio para hornos y calderas en las plantas de procesamiento de gas de Graña y Montero, Procesadora de Gas Pariñas, Malvinas y Curimana, plantas de fraccionamiento de LGN y en la planta de licuefacción de Perú LNG.

- **Consumo en Operaciones petroleras**: Comprende la utilización del gas distribuido en los procesos de extracción y explotación de los yacimientos de gas natural asociado y no asociado.

En la Tabla 54 se detalla el destino de gas natural a nivel nacional durante el año 2017, donde el valor fue de 7.911×10^6 m3 donde el mayor uso del gas natural fue para generación eléctrica (51.8%), seguido del sector industrial (15.1%), sector transporte (8.9%) y otros.

Tabla 54: USOS DEL GAS DISTRIBUIDO DURANTE EL 2017

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generación de electricidad</td>
<td>4,094.8</td>
</tr>
<tr>
<td>Sector Industrial</td>
<td>1,195.3</td>
</tr>
<tr>
<td>Sector Transporte</td>
<td>706.3</td>
</tr>
<tr>
<td>Sector Minero</td>
<td>185.8</td>
</tr>
<tr>
<td>Sector Comercial</td>
<td>25.9</td>
</tr>
<tr>
<td>Sector Doméstico</td>
<td>99.6</td>
</tr>
<tr>
<td>Sector Público</td>
<td>0.0</td>
</tr>
<tr>
<td>Sector Agropecuario</td>
<td>2.0</td>
</tr>
<tr>
<td>Sector Pesquería</td>
<td>0.0</td>
</tr>
<tr>
<td>Consumo propio</td>
<td>1,026.3</td>
</tr>
<tr>
<td>Operaciones petroleras</td>
<td>575.4</td>
</tr>
<tr>
<td>TOTAL PAIS</td>
<td>7,911</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Ilustración 136: USOS DEL GAS DISTRIBUIDO DURANTE EL 2017

- Generación de electricidad: 51.8%
- Sector Industrial: 15.1%
- Sector Transporte: 8.9%
- Sector Minero: 2.3%
- Sector Comercial: 0.3%
- Sector Agropecuario: 0.03%
- Sector Doméstico: 1.3%
- Sector Público: 0.0%
- Consumo propio: 13.0%
- Operaciones petroleras: 7.3%

Fuente: Elaboración Propia / Estadísticas MEM
En la Ilustración 138 e Ilustración 139 se muestra la evolución del número de clientes en el mercado de gas natural. Tal como se puede apreciar, en las ilustraciones el sector residencial agrupa la mayor cantidad de usuarios, siendo su volumen consumido menor al de otras categorías.

Fuente: Elaboración Propia / Estadísticas MEM
Respecto al número de clientes de gas natural reportado por la empresa distribuidora Calidda (Ilustración 138) al 31 de diciembre de 2017 fue de 576 811, de los cuales el 98.6% corresponde al número de clientes en el sector residencial. En dicha ilustración se puede apreciar que en los últimos años, el número de clientes residencial aumentó de manera significativa, debido a que desde el 2008 se vienen implementando normas a través de mecanismos de promoción, tales como el bono de descuento de FISE (Fondo de Inclusión Social Energético).

Asimismo, al 31 de diciembre del 2017, el número de clientes reportado por la empresa Contugas (Ilustración 139) fue 45 468, de los cuales el 99.7% corresponde al número de clientes en el sector residencial.

Por otro lado, durante el 2017, se convirtieron a gas natural 17 989 vehículos haciendo un total acumulado desde el año 2006 de 254 620 unidades convertidas, y 307 estaciones de servicio de GNV se encontraban en operación. En la ilustración 140 se puede visualizar que la mayor penetración de vehículos a GNV corresponde al uso en automóviles.
10.4.7. Exportaciones de Gas Natural

En la Ilustración 141 se muestra la evolución de las exportaciones de gas natural proveniente de Camisea, la cual en los últimos cinco años se ha mantenido casi constante a excepción del año 2015. El valor de las exportaciones durante el 2017 fue de $5.673 \times 10^6 \text{ m}^3$.

Fuente: Elaboración Propia / COFIDE / Estadísticas Perupetro
10.4.8. Producción de derivados a partir de los líquidos de gas natural

Para el 2017, la producción total de derivados a partir de los líquidos de Gas Natural, ascendió a 4 633 x 10³ m³, la cual disminuyó en 8.8 % en relación al año 2016 (ver Tabla 55). La estructura de producción estuvo conformada por gasolina natural (39.5%), GLP (52.5 incluyendo propano y butano), destilados medios (7.4 %) y no energéticos (menos de 1%).

Tabla 55: PRODUCTOS DERIVADOS A PARTIR DE LÍQUIDOS DE GAS NATURAL

<table>
<thead>
<tr>
<th>UNIDAD: 10³ m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Piupetrol Perú Corporation</td>
</tr>
<tr>
<td>GLP (Propano/Butano)</td>
</tr>
<tr>
<td>Propano</td>
</tr>
<tr>
<td>Butano</td>
</tr>
<tr>
<td>Destilados medio para mezcla</td>
</tr>
<tr>
<td>Gasolina Natural</td>
</tr>
<tr>
<td>Aguaytía</td>
</tr>
<tr>
<td>GLP</td>
</tr>
<tr>
<td>Gasolina Natural</td>
</tr>
<tr>
<td>GMP</td>
</tr>
<tr>
<td>Gasolina Natural</td>
</tr>
<tr>
<td>GLP</td>
</tr>
<tr>
<td>Propano/Butano</td>
</tr>
<tr>
<td>Condensados de Gas Natural</td>
</tr>
<tr>
<td>Pentano</td>
</tr>
<tr>
<td>Procesadora de Gas Parinas</td>
</tr>
<tr>
<td>Gasolina Natural</td>
</tr>
<tr>
<td>Propano/Butano</td>
</tr>
<tr>
<td>Propano</td>
</tr>
<tr>
<td>Butano</td>
</tr>
<tr>
<td>Condensados de Gas Natural</td>
</tr>
<tr>
<td>TOTAL PAÍS</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia – Estadísticas DGH-MEM

Ilustración 142: EVOLUCIÓN DE LOS PRODUCTOS DERIVADOS A PARTIR DE LÍQUIDOS DE GAS NATURAL

UNIDAD: 10³ m³

- Condensados de Gas Natural
- Destilados medio para mezcla
- Gasolina Natural
- GLP (Propano/Butano)

Fuente: Elaboración Propia – Estadísticas DGH-MEM
10.5. **BALANCE DE HIDROCARBUROS LÍQUIDOS**

10.5.1. **Esquema Energético**

Con el propósito de clarificar los flujos de la cadena de hidrocarburos líquidos, desde la entrada del recurso (energía primaria) hasta el consumo al usuario final, se muestra de manera esquemática el proceso transformación en las refinerías; así como las pérdidas, exportaciones, consumos propios, mezclas con biocombustibles y consumo final en los distintos sectores.

![Esquema de la Cadena de Hidrocarburos Líquidos](image)

Fuente: Elaboración Propia

10.5.2. **Reservas y Energía Primaria**

Reservas

Las reservas probadas de petróleo a diciembre de 2016 se estimaron en $434,881 \times 10^3$ BLS. Cabe resaltar que estas reservas probadas con respecto al 2015 disminuyeron en 8.1%, debido principalmente por revisiones técnicas (cambios en las tendencias de la declinación de la producción) y revisiones económicas (por el impacto del precio del petróleo en los futuros proyectos de desarrollo).

<table>
<thead>
<tr>
<th>ZONA</th>
<th>PROBADAS</th>
<th>PROBABLES</th>
<th>POSIBLES</th>
<th>RECURSOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Desarrolladas</td>
<td>No Desarrolladas</td>
<td>Total Probadas</td>
<td>Contingentes</td>
</tr>
<tr>
<td>Fase de explotación</td>
<td>Zócalo</td>
<td>20,465</td>
<td>6,434</td>
<td>26,899</td>
</tr>
<tr>
<td>Nonoreste</td>
<td>88,144</td>
<td>57,536</td>
<td>145,680</td>
<td>42,006</td>
</tr>
<tr>
<td>Selva</td>
<td>104,583</td>
<td>157,719</td>
<td>262,302</td>
<td>180,285</td>
</tr>
<tr>
<td>Fase de explotación</td>
<td>Áreas sin contrato / no operadas</td>
<td>205,130</td>
<td>2,940,723</td>
<td>434,881</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Libro Anual de Recursos de Hidrocarburos
En la siguiente gráfica se muestran los valores de estimación histórica de las reservas y recursos de petróleo publicado en los Libros Anuales de Recursos de Hidrocarburos. Es preciso señalar, que los recursos provienen principalmente de una reclasificación de reservas posibles a recursos a partir del año 2009.

Ilustración 144: RESERVAS Y RECURSOS DE PETRÓLEO 2004-2016
(UNIDAD: MBLS)

Fuente: Elaboración Propia / Libro Anual de Recursos de Hidrocarburos

Producción de Petróleo

Durante el año 2017, la producción de petróleo fue de 2.528×10^3 m³; esta producción fue mayor en 7.6 % respecto al año anterior (Ver Tabla 57), influenciado por el incremento de producción en la zona selva (lotes 8 y 31B/D).

Tabla 57: PRODUCCIÓN DE PETRÓLEO
(UNIDAD: 10^3 m³)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GMP</td>
<td>I</td>
<td>43</td>
<td>38</td>
<td>36</td>
<td>38</td>
<td>37</td>
<td>44</td>
<td>45</td>
<td>50</td>
<td>52</td>
<td>48</td>
<td>50</td>
<td>46</td>
<td>49</td>
<td>66</td>
<td>91</td>
<td>67</td>
<td>56</td>
<td>49</td>
</tr>
<tr>
<td>PETROMONT</td>
<td>II</td>
<td>44</td>
<td>39</td>
<td>37</td>
<td>33</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>41</td>
<td>37</td>
<td>33</td>
<td>29</td>
<td>26</td>
<td>25</td>
<td>23</td>
<td>21</td>
<td>18</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>GMP</td>
<td>III</td>
<td>42</td>
<td>37</td>
<td>36</td>
<td>39</td>
<td>38</td>
<td>50</td>
<td>53</td>
<td>58</td>
<td>120</td>
<td>233</td>
<td>172</td>
<td>191</td>
<td>130</td>
<td>113</td>
<td>91</td>
<td>72</td>
<td>55</td>
<td>43</td>
</tr>
<tr>
<td>GMP</td>
<td>IV</td>
<td>32</td>
<td>31</td>
<td>32</td>
<td>34</td>
<td>36</td>
<td>49</td>
<td>46</td>
<td>66</td>
<td>91</td>
<td>67</td>
<td>56</td>
<td>49</td>
<td>45</td>
<td>41</td>
<td>37</td>
<td>37</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>GMP</td>
<td>V</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>SAPET</td>
<td>VVII</td>
<td>237</td>
<td>248</td>
<td>201</td>
<td>191</td>
<td>210</td>
<td>193</td>
<td>177</td>
<td>186</td>
<td>161</td>
<td>161</td>
<td>172</td>
<td>183</td>
<td>177</td>
<td>195</td>
<td>201</td>
<td>203</td>
<td>198</td>
<td>186</td>
</tr>
<tr>
<td>UNIPETRO</td>
<td>IX</td>
<td>29</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CNPC</td>
<td>X</td>
<td>708</td>
<td>669</td>
<td>653</td>
<td>669</td>
<td>659</td>
<td>730</td>
<td>739</td>
<td>773</td>
<td>823</td>
<td>774</td>
<td>758</td>
<td>781</td>
<td>823</td>
<td>671</td>
<td>603</td>
<td>620</td>
<td>627</td>
<td>649</td>
</tr>
<tr>
<td>OLYMPIC</td>
<td>XII</td>
<td></td>
</tr>
<tr>
<td>PETROMONT</td>
<td>XV</td>
<td></td>
</tr>
<tr>
<td>PETROMONT</td>
<td>XX</td>
<td></td>
</tr>
<tr>
<td>TOTAL COSTA NORTE</td>
<td>1,135</td>
<td>1,093</td>
<td>1,024</td>
<td>1,032</td>
<td>1,039</td>
<td>1,124</td>
<td>1,138</td>
<td>1,218</td>
<td>1,456</td>
<td>1,547</td>
<td>1,515</td>
<td>1,559</td>
<td>1,518</td>
<td>1,450</td>
<td>1,449</td>
<td>1,289</td>
<td>1,219</td>
<td>1,199</td>
<td></td>
</tr>
<tr>
<td>SAVIA</td>
<td>2.2B</td>
<td>775</td>
<td>759</td>
<td>720</td>
<td>674</td>
<td>625</td>
<td>623</td>
<td>724</td>
<td>690</td>
<td>639</td>
<td>647</td>
<td>671</td>
<td>628</td>
<td>684</td>
<td>593</td>
<td>621</td>
<td>558</td>
<td>487</td>
<td>456</td>
</tr>
<tr>
<td>SAVIA</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>BPZ</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>TOTAL ZÓCALO</td>
<td>775</td>
<td>759</td>
<td>720</td>
<td>674</td>
<td>625</td>
<td>623</td>
<td>724</td>
<td>694</td>
<td>764</td>
<td>807</td>
<td>912</td>
<td>848</td>
<td>879</td>
<td>751</td>
<td>909</td>
<td>784</td>
<td>649</td>
<td>591</td>
<td></td>
</tr>
<tr>
<td>PLUSPETROL</td>
<td>1-AB</td>
<td>2,124</td>
<td>2,054</td>
<td>2,173</td>
<td>2,100</td>
<td>1,840</td>
<td>1,593</td>
<td>1,625</td>
<td>1,547</td>
<td>1,309</td>
<td>951</td>
<td>1,082</td>
<td>1,024</td>
<td>894</td>
<td>860</td>
<td>753</td>
<td>412</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACIFIC STRATUS</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>PLUSPETROL</td>
<td>8</td>
<td>1,483</td>
<td>1,472</td>
<td>1,443</td>
<td>1,240</td>
<td>1,126</td>
<td>1,015</td>
<td>987</td>
<td>989</td>
<td>899</td>
<td>791</td>
<td>679</td>
<td>579</td>
<td>563</td>
<td>554</td>
<td>555</td>
<td>446</td>
<td>255</td>
<td>339</td>
</tr>
<tr>
<td>MAPLE</td>
<td>31 B.O</td>
<td>29</td>
<td>26</td>
<td>24</td>
<td>22</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>19</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>MAPLE</td>
<td>31 E</td>
<td></td>
</tr>
<tr>
<td>PLUSPETROL</td>
<td>778</td>
<td></td>
</tr>
<tr>
<td>TOTAL SELVA</td>
<td>3,637</td>
<td>3,552</td>
<td>3,640</td>
<td>3,362</td>
<td>3,129</td>
<td>2,631</td>
<td>2,639</td>
<td>2,562</td>
<td>2,236</td>
<td>1,786</td>
<td>1,791</td>
<td>1,629</td>
<td>1,482</td>
<td>1,448</td>
<td>1,444</td>
<td>1,664</td>
<td>1,293</td>
<td>481</td>
<td>738</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas Perupetro
Con respecto a la producción por empresas, el primer productor de petróleo crudo en el Perú en el año 2017 fue la empresa CNPC, que produjo 649×10^3 m3 de petróleo crudo, registrando un incremento de 3.6 % respecto al año 2016. En el año 2016, la producción de petróleo crudo por parte de la empresa CNPC representó el 25,7 % de la producción total.

Como se puede apreciar a nivel país en el año 2017, la producción de hidrocarburos líquidos en el Noroeste ha sido inferior en 1,7 % respecto al año 2016. Asimismo, la producción en la zona Zócalo presenta una disminución en 9,7 %, mientras que la zona Selva presentó un incremento de 0.37 %, tal como se aprecia en Ilustración 146.

Ilustración 145: EVOLUCIÓN DE LA PRODUCCIÓN DE PETRÓLEO
(UNIDAD: 103 m3)

Ilustración 146: EVOLUCIÓN DE LA PRODUCCIÓN DE HIDROCARBUROS LÍQUIDOS
(UNIDAD: 103 m3)

Fuente: Elaboración Propia / Estadísticas – DGH
10.5.3. Infraestructura existente en Refinerías de Petróleo

Las refinerías de petróleo (centros de Transformación) están referidas a las instalaciones en donde se procesa la energía primaria, de tal forma de obtener los derivados de petróleo para la atención de la demanda.

En la siguiente tabla se muestra las capacidades instaladas existentes a nivel nacional al 2017 de las unidades operativas de refinación.

Tabla 58: INFRAESTRUCTURA EXISTENTE EN REFINERÍAS DE PETRÓLEO

<table>
<thead>
<tr>
<th>Empresa Operadora</th>
<th>Refinerias</th>
<th>Capacidad Instalada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo Repsol</td>
<td>Refineria La Pampilla</td>
<td>117 MBPD</td>
</tr>
<tr>
<td>Petróperú S.A.</td>
<td>Refineria Talara</td>
<td>65 MBPD</td>
</tr>
<tr>
<td></td>
<td>Refineria Igotos</td>
<td>12.5 MBPD</td>
</tr>
<tr>
<td></td>
<td>Refineria Conchán</td>
<td>15.5 MBPD</td>
</tr>
<tr>
<td>Maple Gas Corporation del Peru S.R.L.</td>
<td>Refineria Pucalpa</td>
<td>3.3 MBPD</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

10.5.4. Cargas a refinerías

En el año 2017, las cargas a refinerías fueron de 14 469 X 10³ m³, cifra superior en 14.4% a la registrada el año anterior. Del total de las cargas, el 67.6% corresponde a petróleo crudo, lo cual puede corroborarse en la siguiente tabla:

Tabla 59: CARGAS A REFINERÍAS

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Refinería Talara</td>
<td></td>
</tr>
<tr>
<td>Crudo nacional</td>
<td></td>
</tr>
<tr>
<td>Crudo importado</td>
<td></td>
</tr>
<tr>
<td>Refinería Pucalpa</td>
<td></td>
</tr>
<tr>
<td>Crudo nacional</td>
<td></td>
</tr>
<tr>
<td>Crudo importado</td>
<td></td>
</tr>
<tr>
<td>Total Crudo Nacional</td>
<td>14,469</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas DGH-MEM

ÁREA DE PLANEAMIENTO ENERGÉTICO/DGEE 151
Ilustración 147: EVOLUCIÓN DE LAS CARGAS A REFINERÍAS
(UNIDAD: 10^3 m³)

Durante el año 2017, el volumen de petróleo crudo procesado en las refinerías del país, fue 9 786 x 10^3 m³, cifra superior en 17.2 % respecto al año anterior. De este total el 24.1 % proviene del crudo nacional, mientras que el resto es importado (Ver Tabla 59).

El 75.9 % del crudo procesado fue importado, de los cuales; el 50.1 % fue procedente de Ecuador, el 19.9 % de Colombia y el 10.4 % de Trinidad y Tobago entre los países más importantes, tal como se muestra en la Tabla 60.

<table>
<thead>
<tr>
<th>Crudo</th>
<th>Lugar de procedencia/Lote</th>
<th>Destino</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARABIAN LIGHT</td>
<td>Arabia Saudita</td>
<td>154</td>
</tr>
<tr>
<td>AGBAMI/AMENARO</td>
<td>Niguería</td>
<td>151</td>
</tr>
<tr>
<td>BUUUPIRA</td>
<td>Brasil</td>
<td>377</td>
</tr>
<tr>
<td>SOUTH BLEND</td>
<td>Colombia</td>
<td>132</td>
</tr>
<tr>
<td>VASCONIA</td>
<td>Colombia</td>
<td>990</td>
</tr>
<tr>
<td>NAPO</td>
<td>Ecuador</td>
<td>225</td>
</tr>
<tr>
<td>ORIENTE</td>
<td>Ecuador</td>
<td>2,600</td>
</tr>
<tr>
<td>GALEOTA</td>
<td>Trinidad y Tobago</td>
<td>769</td>
</tr>
<tr>
<td>SOUTH GREEN CANYON</td>
<td>EEUU</td>
<td>3</td>
</tr>
<tr>
<td>DSW</td>
<td>EEUU</td>
<td>239</td>
</tr>
<tr>
<td>SAPINHOA</td>
<td>Brasil</td>
<td>-</td>
</tr>
<tr>
<td>MEDANITO</td>
<td>Argentina</td>
<td>121</td>
</tr>
<tr>
<td>MAYA</td>
<td>Mexico</td>
<td>120</td>
</tr>
<tr>
<td>NEMBA</td>
<td>Angola</td>
<td>214</td>
</tr>
<tr>
<td>CUISANA</td>
<td>Colombia</td>
<td>-</td>
</tr>
<tr>
<td>LULA</td>
<td>Brasil</td>
<td>-</td>
</tr>
<tr>
<td>Total Importado</td>
<td></td>
<td>6,095</td>
</tr>
<tr>
<td>Total Nacional</td>
<td></td>
<td>1,054</td>
</tr>
<tr>
<td>Total Crudo Procesado</td>
<td></td>
<td>275</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas DGH-MEM
Tabla 61: EVOLUCIÓN DEL CRUDO IMPORTADO SEGÚN LUGAR DE PROCEDENCIA (UNIDAD: 10^4 m³)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARABIA SAUDITA</td>
<td></td>
</tr>
<tr>
<td>PANAMA</td>
<td></td>
</tr>
<tr>
<td>NIGERIA</td>
<td></td>
</tr>
<tr>
<td>NIGERIA BONNY LIGHT</td>
<td></td>
</tr>
<tr>
<td>NIGERIA AGBANI</td>
<td></td>
</tr>
<tr>
<td>NIGERIA FORCADO</td>
<td></td>
</tr>
<tr>
<td>NIGERIA OUDDE</td>
<td></td>
</tr>
<tr>
<td>NIGERIA QUA BOE</td>
<td></td>
</tr>
<tr>
<td>RUSIA ESPO</td>
<td></td>
</tr>
<tr>
<td>ANGOLA NEMBA</td>
<td></td>
</tr>
<tr>
<td>ANGOLA KSIBANJE</td>
<td></td>
</tr>
<tr>
<td>ANGOLA PALANGA</td>
<td></td>
</tr>
<tr>
<td>IRÁN IRÁN PESADO/LVIANO</td>
<td></td>
</tr>
<tr>
<td>TRINIDAD GALEOTA</td>
<td></td>
</tr>
<tr>
<td>EEUU SOUTH GREEN CANYON</td>
<td></td>
</tr>
<tr>
<td>BRASIL SAPAHDA</td>
<td></td>
</tr>
<tr>
<td>BRASIL ALBACORA</td>
<td></td>
</tr>
<tr>
<td>BRASIL RONCATOR</td>
<td></td>
</tr>
<tr>
<td>BRASIL LULA</td>
<td></td>
</tr>
<tr>
<td>BRASIL BUJPIRA</td>
<td></td>
</tr>
<tr>
<td>BRASIL MARPIN</td>
<td></td>
</tr>
<tr>
<td>BRASIL ESPADARTE</td>
<td></td>
</tr>
<tr>
<td>COLOMBIA CASTILLA</td>
<td></td>
</tr>
<tr>
<td>COLOMBIA CAÑO LIMON</td>
<td></td>
</tr>
<tr>
<td>COLOMBIA CUSIANA</td>
<td></td>
</tr>
<tr>
<td>COLOMBIA SOUTH BLEND</td>
<td></td>
</tr>
<tr>
<td>COLOMBIA VASCOA</td>
<td></td>
</tr>
<tr>
<td>ECUADOR BLOQUE 16</td>
<td></td>
</tr>
<tr>
<td>ECUADOR NAPÓ</td>
<td></td>
</tr>
<tr>
<td>ECUADOR OREIENTE</td>
<td></td>
</tr>
<tr>
<td>VENEZUELA LAGOMAR</td>
<td></td>
</tr>
<tr>
<td>VENEZUELA LAGOTECO</td>
<td></td>
</tr>
<tr>
<td>VENEZUELA LEONA 24</td>
<td></td>
</tr>
<tr>
<td>VENEZUELA SANTA BARBARA</td>
<td></td>
</tr>
<tr>
<td>VENEZUELA EA</td>
<td></td>
</tr>
<tr>
<td>VENEZUELA MESA 30</td>
<td></td>
</tr>
<tr>
<td>VENEZUELA GUAIFITA</td>
<td></td>
</tr>
<tr>
<td>ARGENTINA CAÑADON SECO</td>
<td></td>
</tr>
<tr>
<td>ARGENTINA MEDANITO</td>
<td></td>
</tr>
<tr>
<td>ARGENTINA RINCON DE LOS SAUCES</td>
<td></td>
</tr>
<tr>
<td>MEXICO MAYA</td>
<td></td>
</tr>
</tbody>
</table>

Total Crudo Importado 3,589 4,207 4,390 4,785 4,827 5,599 5,815 6,352 5,706 5,696 5,579 5,425 5,423 4,860 4,821 5,140 6,033 7,424

Fuente: Elaboración Propia / Estadísticas DGH-MEM

Ilustración 148: EVOLUCIÓN DEL CRUDO IMPORTADO SEGÚN LUGAR DE PROCEDENCIA (UNIDAD: 10^4 m³)

![Ilustración de la evolución del crudo importado](image-url)

Fuente: Elaboración Propia / Estadísticas - DGH

ÁREA DE PLANEAMIENTO ENERGÉTICO/DGEE 153
En el marco de la Ley Nº 28054, Ley de Promoción del Mercado de Biocombustibles, en el año 2007 se emitió el D.S 021-2007-EM, mediante el cual se reglamentó la mezcla obligatoria de 7,8% en volumen de alcohol carburante con la gasolina, según un cronograma implementación por departamentos, y de 2% de biodiesel en el diésel 2 (Diésel B2), desde el 2009 hasta el 2010, y 5 % de biodiesel con diésel 2 (diésel B5) desde el 1 de enero de 2011 en reemplazo del diésel B2. Las mezclas se realizan en las Refinerías o Plantas de Abastecimiento.

La Tabla 62, muestra la compra de biocombustibles para mezclas en las Refinerías y Plantas de Abastecimiento. Puede observarse que para el caso de Biodiesel, el 99.4% de biodiesel usado para mezclas en plantas y refinerías fue importado en el año 2017. Siendo Indonesia, el país de origen del 54,4% de las importaciones de biodiesel B100, también se importó de España y Argentina.

Para el caso del Etanol, el 86,3 % de las compras para mezcla en plantas y refinerías en el año 2017 fue importado y el 100 % proveniente de Estados Unidos de América.

<table>
<thead>
<tr>
<th>Tabla 62: COMPRAS PARA MEZCLAS EN PLANTAS Y REFINERÍAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(UNIDAD: 103 Bls)</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Biodiesel 100</td>
</tr>
<tr>
<td>Nacional</td>
</tr>
<tr>
<td>Importado</td>
</tr>
<tr>
<td>Etanol</td>
</tr>
<tr>
<td>Nacional</td>
</tr>
<tr>
<td>Importado</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Ilustración 149: EVOLUCIÓN DE LAS COMPRAS PARA MEZCLAS EN PLANTAS Y REFINERÍAS DE BIOCOMBUSTIBLES (UNIDAD: 103 Bls)

Fuente: Elaboración Propia
10.5.5. Producción de derivados de petróleo crudo en refinerías

En el año 2017, la producción de derivados de petróleo crudo fue de 10 820 x 10³ m³, ello representó un incremento de 4.7 % con relación al 2016.

Del total de derivados producidos, los diésel B5 y diésel B5-S50 representaron el 31.9%, seguido de Petróleo Industrial con 30.8 % y las gasolinas con el 24.0%. La estructura de producción se debe a la calidad del crudo procesado, las características de las refinerías y el mercado petrolero a nivel nacional e internacional.

Tabla 63: PRODUCCIÓN DE DERIVADOS DE PETRÓLEO CRUDO EN REFINERÍAS
(UNIDAD: 10³ m³)

<table>
<thead>
<tr>
<th>PRODUCTO</th>
<th>La Pampilla</th>
<th>Talara</th>
<th>Conchan</th>
<th>Iquitos</th>
<th>Pucallpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP</td>
<td>96</td>
<td>261</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gasolina Motor</td>
<td>-</td>
<td>844</td>
<td>768</td>
<td>115</td>
<td>10</td>
</tr>
<tr>
<td>Gasohol</td>
<td>858</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Turbo</td>
<td>580</td>
<td>170</td>
<td>-</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>2,241</td>
<td>909</td>
<td>102</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>Diesel B5</td>
<td>2</td>
<td>532</td>
<td>37</td>
<td>138</td>
<td>24</td>
</tr>
<tr>
<td>Diesel B-5(S-50)</td>
<td>2,188</td>
<td>236</td>
<td>290</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No Energetico</td>
<td>147</td>
<td>33</td>
<td>127</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>6,112</td>
<td>2,985</td>
<td>1,323</td>
<td>347</td>
<td>53</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas DGH-MEM

Ilustración 150: PARTICIPACIÓN DE LA PRODUCCIÓN DE DERIVADOS DE PETRÓLEO CRUDO EN REFINERÍAS

Fuente: Elaboración Propia / Estadísticas DGH-MEM
Respecto a la producción de Biocombustibles, al año 2017, en el Perú ha operado una planta productora de etanol carburante a partir de caña de azúcar, es la planta de la empresa Sucroalcolera del Chira S.A., que cuenta con una capacidad de producción de 14,6 m3/hr de alcohol carburante, entró en producción a fines del tercer trimestre del año 2009. Para el caso de Biodiesel, registraron producción para el año 2017, la planta de producción, cuyo operador es Industrias del Espino S.A. La producción del año 2017 de etanol fue 136,4x 103 Bls y de biodiesel 12,8 x 103 Bls

Tabla 64: EVOLUCIÓN DE LA PRODUCCIÓN DE DERIVADOS DE PETRÓLEO CRUDO EN REFINERÍAS (UNIDAD: 103 m3)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GLP</td>
<td>346.17</td>
<td>385.41</td>
<td>353.08</td>
<td>349.08</td>
<td>315.25</td>
<td>341.91</td>
<td>348.34</td>
<td>367.35</td>
<td>356.91</td>
</tr>
<tr>
<td>Gasolina Motor</td>
<td>1473.93</td>
<td>1675.98</td>
<td>1516.29</td>
<td>1388.83</td>
<td>1358.47</td>
<td>1550.67</td>
<td>1702.25</td>
<td>1736.72</td>
<td></td>
</tr>
<tr>
<td>Gasohol</td>
<td>747.79</td>
<td>841.86</td>
<td>826.71</td>
<td>930.17</td>
<td>860.07</td>
<td>929.10</td>
<td>770.66</td>
<td>794.54</td>
<td>770.64</td>
</tr>
<tr>
<td>Turbo</td>
<td>53.77</td>
<td>12.70</td>
<td>10.18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Kerosene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>82.30</td>
<td>4897.65</td>
<td>4925.08</td>
<td>4578.30</td>
<td>4199.32</td>
<td>4391.81</td>
<td>3566.39</td>
<td>3446.40</td>
<td></td>
</tr>
<tr>
<td>Diesel 2</td>
<td>82.30</td>
<td>55.28</td>
<td>59.46</td>
<td>41.50</td>
<td>84.35</td>
<td>451.31</td>
<td>485.97</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Diesel B2/B5</td>
<td>0.00</td>
<td>4842.37</td>
<td>4865.62</td>
<td>4536.80</td>
<td>4114.97</td>
<td>4051.65</td>
<td>3905.84</td>
<td>3566.39</td>
<td>3446.40</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>2082.34</td>
<td>2230.27</td>
<td>1982.65</td>
<td>1776.98</td>
<td>1748.94</td>
<td>1740.90</td>
<td>2082.54</td>
<td>2500.99</td>
<td>3335.96</td>
</tr>
<tr>
<td>No Energéticos</td>
<td>345.58</td>
<td>358.67</td>
<td>291.12</td>
<td>297.34</td>
<td>326.91</td>
<td>287.67</td>
<td>265.27</td>
<td>316.34</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>1663.42</td>
<td>16.43</td>
<td>36.31</td>
<td>9.80</td>
<td>22.28</td>
<td>17.95</td>
<td>15.37</td>
<td>12.95</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>6795.29</td>
<td>10426.50</td>
<td>10085.33</td>
<td>9655.71</td>
<td>9383.59</td>
<td>9890.54</td>
<td>10172.69</td>
<td>9996.48</td>
<td>10820.48</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas DGH-MEM

![Illustración 151](image-url)
Tabla 65: PRODUCCIÓN DE BIOCOMBUSTIBLES
(UNIDAD: 10^3 Bls)

<table>
<thead>
<tr>
<th>COMPAÑÍA</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiesel B100</td>
<td></td>
</tr>
<tr>
<td>Industrias del Espino S.A</td>
<td>12.8</td>
</tr>
<tr>
<td>Etanol</td>
<td></td>
</tr>
<tr>
<td>Sucroalcolera del Chira</td>
<td>136.4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Empresas

10.5.6. Ventas de derivados de petróleo crudo y líquidos de gas natural

La demanda de los derivados de hidrocarburos líquidos en el año 2017 fue 14 747 x 10^3 m^3 en el mercado nacional, teniendo una mayor participación en las ventas el diesel B5 (s-50) y el gasohol. Respecto al año 2016, se registró un incremento de 2.2% (ver Ilustración 152).

Ilustración 152: PARTICIPACIÓN DE LAS VENTAS DE DERIVADOS DE PETRÓLEO CRUDO Y LÍQUIDOS DE GAS NATURAL EN EL MERCADO INTERNO – 2017

El consumo de la gasolina motor y gasohol, cuyo uso principalmente es en el sector transporte, aumentó en 9.1 y 3.1 %, respectivamente, con respecto al año 2016, ello se debe principalmente al incremento del parque automotor. Por su parte, el turbo incrementó su consumo con relación al 2016 en un 1.8%.

A partir del año 2011, se prohibió la venta del kerosene, mediante el D.S. Nº 045-2009-EM; y en el 2010, con la publicación del D.S. Nº 025-2010-EM, se amplió el plazo establecido en el D.S. Nº 045-2009-EM para la implementación del Programa de Sustitución de consumo doméstico del kerosene por GLP hasta el 30 de setiembre de 2010.
Fuente: Elaboración Propia / Estadísticas DGH-MEM

La venta de gas licuado de petróleo (GLP) creció en 4.1% respecto al año anterior, los sectores que demandaron este combustible fueron principalmente el residencial - comercial e industrial.

Por otro lado, en el sector residencial, se ha mantenido la tendencia a un mayor consumo de GLP, el cual sustituyó totalmente al kerosene y en menor proporción a la leña. En el año 2016, el Ministerio de Energía y Minas a través del Programa Nacional Cocina Perú entregó a la población 64 798 kits de cocinas a GLP a nivel nacional.

El diésel B5 y diésel B5-S50, son los combustibles de mayor consumo en el país; se emplea en los sectores: transporte, industrial, minería, etc. Como se mencionó anteriormente, a partir del 1 de enero de 2011 la comercialización de diésel B5, mezcla de 95% de diésel 2 y 5% de biodiesel B100, es obligatoria en todo el país, en reemplazo...
del diésel B2. En el rubro de la generación termoeléctrica, su consumo ha sido mayormente desplazado por el gas distribuido. Respecto al año 2016, se registró un incremento de 1.9% del consumo de diesel.

Los residuales agrupan al petróleo industrial N° 6, petróleo industrial N° 500, IFO, HFO y bunker, para el año 2017 las ventas de petróleo industrial disminuyeron en 0.5% respecto al año anterior.

10.5.7. Consumo Final por Sectores

Dentro de los diferentes sectores económicos, el principal demandante de los derivados de hidrocarburos líquidos fue el sector transporte con el 74.7%, seguido del sector industrial con el 10.7%.

Tabla 67: CONSUMO FINAL DE LOS DERIVADOS DE HIDROCARBUROS LÍQUIDOS Y BIOCOMBUSTIBLES POR SECTORES ECONÓMICOS

(UNIDAD: 10³ m³)

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>GLP</th>
<th>Gasohol</th>
<th>Gasolina</th>
<th>Turbo</th>
<th>Diesel B5</th>
<th>Fuel Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residencial</td>
<td>1,492</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Comercial</td>
<td>151</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>89</td>
<td>0</td>
</tr>
<tr>
<td>Público</td>
<td>2</td>
<td>153</td>
<td>25</td>
<td>46</td>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td>Transporte</td>
<td>941</td>
<td>2,143</td>
<td>358</td>
<td>1,218</td>
<td>5,457</td>
<td>189</td>
</tr>
<tr>
<td>Agropecuario y Agroindustrial</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>47</td>
<td>-</td>
</tr>
<tr>
<td>Pesquería</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>71</td>
<td>-</td>
</tr>
<tr>
<td>Minero Metalúrgico</td>
<td>97</td>
<td>87</td>
<td>0</td>
<td>-</td>
<td>324</td>
<td>1</td>
</tr>
<tr>
<td>Industrial</td>
<td>625</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>131</td>
<td>70</td>
</tr>
<tr>
<td>Consumo Final Energético</td>
<td>3,312</td>
<td>2,383</td>
<td>388</td>
<td>1,263</td>
<td>6,195</td>
<td>260</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Ilustración 154: CONSUMO FINAL DE LOS DERIVADOS DE HIDROCARBUROS LÍQUIDOS Y BIOCOMBUSTIBLES POR SECTORES ECONÓMICOS

Fuente: Elaboración Propia
10.5.8. Balanza Comercial

En términos de volumen, en el año 2017 las exportaciones fueron 15 725 10^3 m3 y las importaciones fueron 14 047 10^3 m3, generando un saldo positivo en la Balanza Comercial de 1 678 10^3 m3 de hidrocarburos, debido principalmente a las exportaciones de gas natural.

En el año 2017, en términos monetarios el déficit de la Balanza Comercial de Hidrocarburos fue 2 220 064 10^3 US$ incrementándose en un 29,2 % con relación al año anterior, influenciado por las importaciones de diésel y el bajo precio del gas natural que se exporta, no incluye las importaciones de Biodiesel B100 y Etanol Carburante.

Ilustración 155: BALANZA COMERCIAL DE HIDROCARBUROS (UNIDAD: 10^3 US$)

Ilustración 156: BALANZA COMERCIAL DE HIDROCARBUROS (UNIDAD: 10^3 m3)

Fuente: Elaboración Propia / Estadísticas DGH-MEM
A partir de junio del año 2010 se inició la exportación de gas natural a través de la Planta de licuefacción de Perú LNG, durante el año 2017 se exportaron en total 51 809 \(10^3\) Bbl de gas natural, cuyos principales destinos fueron México y España.

Con relación a los biocombustibles, durante el año 2017 se importaron 1994 \(10^3\) Bbl de biodiesel B100 y 847 \(10^3\) Bbl de etanol. El Grupo Gloria que adquirió la propiedad de las instalaciones de la empresa Maple Combustibles SRL no ha registrado producción de etanol carburante.

Tabla 69: BALANZA COMERCIAL DE HIDROCARBUROS Y BIOCOMBUSTIBLES (UNIDAD: 10^3 BIs)

<table>
<thead>
<tr>
<th>PRODUCTOS</th>
<th>EXPORTACIONES</th>
<th>IMPORTACIONES</th>
<th>SALDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crudo</td>
<td>573</td>
<td>45,736</td>
<td>(45 163)</td>
</tr>
<tr>
<td>Gas natural*</td>
<td>51,809</td>
<td></td>
<td>51 809</td>
</tr>
<tr>
<td>GLP/Propano/Butano</td>
<td>608</td>
<td>2,492</td>
<td>(1 884)</td>
</tr>
<tr>
<td>Gasolinas/Naftas</td>
<td>19,961</td>
<td>7,777</td>
<td>12 184</td>
</tr>
<tr>
<td>Turbo</td>
<td>5,180</td>
<td>3,455</td>
<td>1 725</td>
</tr>
<tr>
<td>Diesel</td>
<td>3,874</td>
<td>27,426</td>
<td>(23 552)</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>16,638</td>
<td>150</td>
<td>16 688</td>
</tr>
<tr>
<td>Biocombustibles**</td>
<td></td>
<td>2,842</td>
<td>(2 842)</td>
</tr>
<tr>
<td>Otros productos</td>
<td>70</td>
<td>1,323</td>
<td>(1 253)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>98,913</td>
<td>91,200</td>
<td>7 712</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas DGH-MEM
*En el caso del Gas Natural los volúmenes se expresan para el GNL.
** Información proveniente de las empresas y SUNAT.

10.5.9. Precios de importación y exportación

En el año 2017, el precio de exportación de la canasta petrolera (US$ 282 por metro cúbico) fue 20 % menor que el precio de importación de la canasta petrolera (US$ 338 por metro cúbico), debido a las características de los productos involucrados en la canasta.

El Perú, debido a la configuración existente en las refinerías locales se caracteriza por exportar petróleo crudo de baja calidad (petróleo pesado) e importar petróleos crudos de alta calidad (liviano) y derivados con alto valor agregado, como diésel, gasolinas de aviación y biodiesel B100. La menor calidad y el menor valor agregado de nuestros productos inciden en el menor precio de la canasta de exportación petrolera, lo contrario ocurre en el caso de la canasta de importación petrolera.

En la Tabla 70, se muestra el precio de importación de los hidrocarburos, mientras que la Tabla 71 muestra el precio de exportación de los mismos para los últimos cinco años.
Tabla 70: PRECIOS DE IMPORTACIÓN DEL PETRÓLEO, DERIVADOS DE LOS HIDROCARBUROS Y BIOCOMBUSTIBLES (UNIDAD: US$/m³)

<table>
<thead>
<tr>
<th>AÑO</th>
<th>GASOLINA AVIACIÓN</th>
<th>DIESEL</th>
<th>BIODIESEL</th>
<th>BASES LUBRICANTES</th>
<th>QUÍMICOS SOLVENTES</th>
<th>PETRÓLEO CRUDO</th>
<th>TURBO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1.326</td>
<td>811</td>
<td>951</td>
<td>1.081</td>
<td>1.128</td>
<td>680</td>
<td>829</td>
</tr>
<tr>
<td>2014</td>
<td>1.254</td>
<td>769</td>
<td>797</td>
<td>1.007</td>
<td>813</td>
<td>628</td>
<td>771</td>
</tr>
<tr>
<td>2015</td>
<td>878</td>
<td>435</td>
<td>629</td>
<td>783</td>
<td>862</td>
<td>330</td>
<td>418</td>
</tr>
<tr>
<td>2016</td>
<td>-</td>
<td>371</td>
<td>714</td>
<td>1.322</td>
<td>664</td>
<td>262</td>
<td>379</td>
</tr>
<tr>
<td>2017</td>
<td>443</td>
<td>435</td>
<td>-</td>
<td>1.886</td>
<td>830</td>
<td>338</td>
<td>443</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas DGH-MEM

Ilustración 157: PRECIOS DE IMPORTACIÓN DEL PETRÓLEO, DERIVADOS DE LOS HIDROCARBUROS Y BIOCOMBUSTIBLES (UNIDAD: US$/m³)

Fuente: Elaboración Propia / Estadísticas DGH-MEM

Tabla 71: PRECIOS DE EXPORTACIÓN DEL PETRÓLEO, DERIVADOS DE LOS HIDROCARBUROS Y BIOCOMBUSTIBLES (UNIDAD: US$/m³)

<table>
<thead>
<tr>
<th>AÑO</th>
<th>GASOLINA MOTOR</th>
<th>KERO TURBO</th>
<th>PETRÓLEO INDUSTRIAL</th>
<th>GLP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>-</td>
<td>839</td>
<td>791</td>
<td>409</td>
</tr>
<tr>
<td>2014</td>
<td>-</td>
<td>768</td>
<td>557</td>
<td>415</td>
</tr>
<tr>
<td>2015</td>
<td>575</td>
<td>479</td>
<td>278</td>
<td>243</td>
</tr>
<tr>
<td>2016</td>
<td>276</td>
<td>400</td>
<td>195</td>
<td>398</td>
</tr>
<tr>
<td>2017</td>
<td>345</td>
<td>439</td>
<td>373</td>
<td>486</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia / Estadísticas DGH-MEM
10.5.10. Matriz y Flujo del Balance de Hidrocarburos y Biocombustibles

En esta sección se presenta la matriz y el flujo del Balance de Hidrocarburos y biocombustibles al nivel nacional, desde su origen hasta su destino final en los diferentes sectores. La matriz del balance se basa en un conjunto de relaciones de equilibrio que contabilizan la energía que se produce, la que se intercambia con el exterior, la que se transforma, la de consumo propio, la de pérdidas y la que se destina a los sectores. Respecto a la columna de gas natural, el valor de exportación que se coloca corresponde al valor de gas natural exportado en el año 2017 según lo reportado por las estadísticas de Perupetro.

La matriz considera las fuentes de energía primaria y secundaria descritas en las secciones anteriores, mostradas en columnas, mientras que los procesos que generan los flujos de la energía se muestran en filas. En la Tabla 72, se muestra la matriz de energía correspondiente al año 2017 en unidades originales, mientras que en la siguientes tabla se muestra en terajoules.
Balance Nacional de Energía 2017

Tabla 72: BALANCE NACIONAL DE HIDROCARBUROS Y BIOCOMBUSTIBLES: 2017

<table>
<thead>
<tr>
<th>ENERGÍA PRIMARIA</th>
<th>ENERGÍA SECUNDARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA</td>
<td>Planeamiento Energético</td>
</tr>
<tr>
<td>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA</td>
<td>Planeamiento Energético</td>
</tr>
<tr>
<td>OFERTA</td>
<td>OFERTA TOTAL</td>
</tr>
<tr>
<td>1. Producción</td>
<td>15 900.3</td>
</tr>
<tr>
<td>2. Importación</td>
<td>45 736.0</td>
</tr>
<tr>
<td>3. Variación de Inventario</td>
<td>(470.5)</td>
</tr>
<tr>
<td>4. OFERTA TOTAL</td>
<td>61 165.8</td>
</tr>
<tr>
<td>5. Exportación</td>
<td>(572.6)</td>
</tr>
<tr>
<td>6. No Aprovechado</td>
<td>(40.1)</td>
</tr>
<tr>
<td>7. Transferencias</td>
<td>(210 638.4)</td>
</tr>
<tr>
<td>7. OFERTA INTERNA BRUTA</td>
<td>60 593.2</td>
</tr>
<tr>
<td>8. Total Transformación</td>
<td>(61 551.9)</td>
</tr>
<tr>
<td>Coqueñas y Altos Hornos</td>
<td>61551.9</td>
</tr>
<tr>
<td>Carboneras</td>
<td>61551.9</td>
</tr>
<tr>
<td>Plantas de Gas</td>
<td>(2556.2)</td>
</tr>
<tr>
<td>Centrales Eléctricas (Mercado Eléctrico)</td>
<td>(135 801.8)</td>
</tr>
<tr>
<td>9. Consumo Propio Sector Energía</td>
<td>958.7</td>
</tr>
<tr>
<td>10. Pérdidas (transp., distr. y almac.)</td>
<td>958.7</td>
</tr>
<tr>
<td>11. Ajustes</td>
<td>958.7</td>
</tr>
<tr>
<td>12. CONSUMO FINAL TOTAL</td>
<td>20 831.3</td>
</tr>
<tr>
<td>12.1 Consumo Final No Energético</td>
<td>20 831.3</td>
</tr>
<tr>
<td>Residencial</td>
<td>9 384.7</td>
</tr>
<tr>
<td>Comercial</td>
<td>951.5</td>
</tr>
<tr>
<td>Público</td>
<td>14.5</td>
</tr>
<tr>
<td>Transportes</td>
<td>5 916.9</td>
</tr>
<tr>
<td>Agropecuario</td>
<td>19.4</td>
</tr>
<tr>
<td>Pesquero</td>
<td>3.9</td>
</tr>
<tr>
<td>Minero</td>
<td>610.1</td>
</tr>
<tr>
<td>Industria</td>
<td>3 930.4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

ÁREA DE PLANEAMIENTO ENERGÉTICO/DGEE 164
Balance Nacional de Energía 2017

Tabla 73: BALANCE NACIONAL DE HIDROCARBUROS Y BIOCOMBUSTIBLES: 2017

(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA</th>
<th>ENERGÍA PRIMARIA</th>
<th>ENERGÍA SECUNDARIA</th>
<th>TOTAL ENERGÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energías Primarias</td>
<td>Energías Secundarias</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Producción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Importación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Variación de Inventarios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. OFERTA TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Exportación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. No Aprovechada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Transferencias</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Total Transformación</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Consumo Propio Sector Energía</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Perdidas (transp., distr. y almac.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Ajustes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENERGÍA PRIMARIA</th>
<th>ENERGÍA SECUNDARIA</th>
<th>TOTAL ENERGÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energías Primarias</td>
<td>Energías Secundarias</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
Ilustración 159: DIAGRAMA DE FLUJO DEL BALANCE NACIONAL DE HIDROCARBUROS LÍQUIDOS: 2017
(UNIDAD: TJ)

Fuente: Elaboración Propia
10.6. BALANCE DE CARBÓN MINERAL Y DERIVADOS

10.6.1. Esquema Energético

Con el propósito de clarificar los flujo de la cadena de carbón mineral y derivados, desde la entrada del recurso (energía primaria y secundarias) hasta el consumo al usuario final, se muestra de manera esquemática el proceso transformación en las carboneras, coquerías y altos hornos, plantas de generación, las importaciones y exportaciones, consumos propios, inventarios y el consumo final en los distintos sectores, entre la cual destaca como máximo consumidor las empresas cementeras correspondientes al sector industrial.
10.6.2. Reservas y Energía Primaria

Reservas

Las reservas de carbón mineral a fines del año 2015 fueron de $22,94 \times 10^9$ kg, de las cuales $7,89 \times 10^9$ kg son probadas y $15,05 \times 10^9$ kg probables.

El carbón antracita es el que más abunda en nuestro país (98,8% del total de las reservas) y se caracteriza por ser un tipo de carbón que arde con dificultad, pero que es rico en carbono y posee un alto poder calorífico. Por otra parte, el Perú cuenta también con yacimientos de carbón de tipo bituminoso (1,2%).

Las principales reservas de carbón en el Perú, se ubican en las regiones de La Libertad, Ancash y Lima.

Ilustración 162: YACIMIENTOS DE CARBÓN MINERAL EN EL PERÚ

Fuente: Elaboración Propia
La región La Libertad posee la mayor reserva probada con 4.18×10^9 kg y 8.04×10^9 kg como reserva probable, representando el 53,3% de las reservas totales. Los principales yacimientos de carbón mineral se ubican en la provincia de Otuzco y Santiago de Chuco, siendo básicamente carbón tipo antracita.

En segundo lugar se ubica la región Ancash con 2.50×10^9 kg como reservas probadas y 4.9×10^9 kg como reserva probable, participando con el 32,3% de las reservas totales nacionales, estas reservas se encuentran ubicadas principalmente en las provincias de Pallasca y Santa. Finalmente, el siguiente aporte a las reservas, está dado por Lima que tiene 1.04×10^9 kg de reservas probadas y 1.93×10^9 kg de reservas probables, con una participación del 12,96% del total nacional de reservas. Los principales yacimientos se ubican en la provincia de Oyón, con reservas de carbón de tipo antracita principalmente.

Producción Nacional de Carbón Mineral

La producción de carbón mineral oficialmente registrada en el año 2017 fue de 3.01176×10^3 kg. Dicha producción corresponde en una mayor proporción a unidades que están ubicadas en las regiones Ancash y La Libertad para el caso del carbón antracítico, y Lima y Ancash para el caso del carbón bituminoso; de las cuales la gran mayoría son pequeños productores mineros o productores mineros artesanales.

La mayor producción de carbón mineral se registra en el departamento de Lima (43,6%), donde opera la empresa Obras Civiles S.A.C. con sus unidades División Oyón 1, 2 y 3, en segundo lugar la mayor producción se concentra en el departamento de Ancash con un 30,0% de participación en la producción nacional, donde opera la empresa San Roque F.M. S.A.C., titular de la Unidad San Roque F.M., responsable de esta gran producción.

En la siguiente tabla se muestra cómo ha variado la producción nacional de carbón del año 2016 al año 2017, la cual se ha incrementado en un 12,1%.

<table>
<thead>
<tr>
<th>EMPRESA</th>
<th>UNIDAD</th>
<th>UBICACIÓN</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN ROQUE F.M. S.A.C.</td>
<td>SAN ROQUE F M</td>
<td>ANCASH</td>
<td>62 651</td>
<td>49 049</td>
</tr>
<tr>
<td>OBRAS CIVILES Y MINERAS S.A.C.</td>
<td>DIVISION OYON 1</td>
<td>LIMA</td>
<td>40 508</td>
<td>39 615</td>
</tr>
<tr>
<td>OBRAS CIVILES Y MINERAS S.A.C.</td>
<td>DIVISION OYON 3</td>
<td>LIMA</td>
<td>27 861</td>
<td>29 771</td>
</tr>
<tr>
<td>OBRAS CIVILES Y MINERAS S.A.C.</td>
<td>DIVISION OYON 2</td>
<td>LIMA</td>
<td>26 417</td>
<td>29 974</td>
</tr>
<tr>
<td>MINERA CONCEPCION S.A.C.</td>
<td>CALVI I</td>
<td>ANCASH</td>
<td>14 725</td>
<td>26 138</td>
</tr>
<tr>
<td>MINERA MARCO DE HUARAZ S.R.L.</td>
<td>MARCO</td>
<td>ANCASH</td>
<td>14 250</td>
<td>8 330</td>
</tr>
<tr>
<td>UNIDAD MINERA SAN LORENZO S.A.C.</td>
<td>SAN LORENZO</td>
<td>LIMA</td>
<td>11 332</td>
<td>696</td>
</tr>
<tr>
<td>S.M.R.L. COAL MINE</td>
<td>COAL MINE</td>
<td>LIMA</td>
<td>12 768</td>
<td>9 566</td>
</tr>
<tr>
<td>MINING ATALAYA S.A.C.</td>
<td>ATALAYA</td>
<td>LIMA</td>
<td>10 369</td>
<td>5 662</td>
</tr>
<tr>
<td>CORPORACION E INVERSIONES VIRGEN DE GUADALUPE S.A.C.</td>
<td>OYON 3</td>
<td>LIMA</td>
<td>6 410</td>
<td>7 443</td>
</tr>
</tbody>
</table>
10.6.3. Importación y exportación

En el año 2017, se ha registrado 470 526x10^3 kg de carbón mineral importado, lo cual significa una reducción en 20% de las importaciones respecto al año 2016.

Tabla 75: IMPORTACIÓN DE CARBÓN
(UNIDAD: 10^3 kg)

<table>
<thead>
<tr>
<th>EMPRESA</th>
<th>PROCEDENCIA</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
<th>Estructura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cementos Pacasmayo S.A.A.</td>
<td>Colombia</td>
<td>-</td>
<td>32 744</td>
<td>-</td>
<td>7,0%</td>
</tr>
<tr>
<td>Unión Andina de Cementos S.A.A. - UNACEM</td>
<td>Colombia</td>
<td>106 310</td>
<td>40 325</td>
<td>-62,1%</td>
<td>15,7%</td>
</tr>
<tr>
<td></td>
<td>Venezuela</td>
<td>36 457</td>
<td>33 335</td>
<td>-8,6%</td>
<td></td>
</tr>
<tr>
<td>Cementos Yura S.A.</td>
<td>Colombia</td>
<td>31 750</td>
<td>129 364</td>
<td>307,5%</td>
<td>33,6%</td>
</tr>
<tr>
<td></td>
<td>Venezuela</td>
<td>62 544</td>
<td>28 874</td>
<td>-53,8%</td>
<td></td>
</tr>
<tr>
<td>Engie Energía Perú S.A.</td>
<td>Colombia</td>
<td>244 918</td>
<td>103 956</td>
<td>-57,6%</td>
<td>43,8%</td>
</tr>
<tr>
<td></td>
<td>Estados Unidos</td>
<td>103 388</td>
<td>101 928</td>
<td>-1,4%</td>
<td></td>
</tr>
<tr>
<td>SOUTHERN PERU COPPER</td>
<td>Chile</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estados Unidos</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>585 380</td>
<td>470 526</td>
<td>-20</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
En la Ilustración 163, se observa que ENGIE ENERGIA PERU S.A. pasó a ser la principal empresa importadora de carbón mineral en el Perú con una participación de 43,8%, seguido de CEMENTOS YURA S.A. con 33,6% de la importación nacional de carbón.

Ilustración 163: ESTRUCTURA DE LAS IMPORTACIONES DE CARBÓN

En el 2017, la cantidad importada total de carbón mineral procedió principalmente de Colombia y Estados Unidos con una participación de 65% y 22%, respectivamente.

Ilustración 164: IMPORTACIONES DE CARBÓN POR PAÍS DE ORIGEN

10.6.4. Impuestos

Mediante D.S. Nº 211-2007-EF, se establecieron montos fijos del Impuestos Selectivo al Consumo (ISC) considerando el criterio de proporcionalidad al grado de nocividad de los combustibles de conformidad con lo dispuesto en el artículo 3 de la Ley Nº 28694, Ley que regula el contenido de azufre en el combustible diésel. Para el caso del carbón mineral se determinó su aplicación para el periodo 2011-2016.

Posteriormente, se publicó el D.S. Nº 009-2011-EF, Modificación de la tabla de montos fijos del Impuesto Selectivo al Consumo aplicable a los combustibles, considerando el criterio de proporcionalidad al grado de nocividad de los combustibles, aprobada por el Decreto Supremo Nº 211-2007-EF, donde se postergó la aplicación del ISC para el carbón mineral hasta el periodo 2014-2016.

Finalmente en el 2016, el Decreto Supremo Nº 111-2016-EF grava con el ISC al carbón mineral (hulla bituminosa y antracita) para uso energético (cuando son utilizadas como combustible o como fuente energética, o intervienen en un proceso...
de incineración) con S/ 51,72 por tonelada, y a la hulla bituminosa para uso energético y las demás hullas con S/ 55,19 por tonelada.

10.6.5. Demanda Total de Carbón Mineral

En el año 2017, la demanda total de carbón mineral (incluyendo consumos para generación de electricidad y consumos finales) disminuyó en 16.8% respecto al año anterior. Asimismo, la demanda total de carbón mineral fue 1 004 215 x 10³ kg, de los cuales el 30.5% fue consumido por las centrales de generación eléctrica, entre las que se encuentran la Central Térmica de Ilo 2 (ENGIE Energía Perú S.A.) en el Mercado Eléctrico y la Empresa Agroindustrial Trupal S.A. para uso propio, y el 69.5% restante por los sectores de consumo final.

10.6.6. Consumo final de Carbón Mineral

Respecto al consumo de carbón mineral en el Perú, los estudios revelan que esta fuente de energía es aprovechada principalmente por las fábricas de cemento, empresas siderúrgicas y ladrilleras.

En el 2017, el consumo final de carbón mineral fue 697 577 x 10³ kg., mostrando una reducción de 12,4% con respecto al 2016.

10.6.6.1. Sector Residencial y Comercial

En el año 2017, el consumo de carbón mineral en hoteles fue de 14 x 10³ kg., representando el sector comercial, el 0,002% del consumo final.

El carbón mineral en este sector es consumido en forma de briquetas y se emplea principalmente para calefacción.

10.6.6.2. Sector Industrial

En el 2017 el sector industrial consumió 697 563 x 10³ kg de carbón mineral, mostrando una participación equivalente aproximada del 100% del consumo final total de carbón mineral.

a. Metalúrgica

El sector metalúrgico consumió en el año 2017, 42 986 x 10³ Kg. de carbón mineral, mostrando una participación del 6,2% sobre el consumo final total de carbón mineral en el sector industrial.

De acuerdo a lo registrado en el 2017, la empresa de mayor consumo fue Corporación de Aceros Arequipa. No se reporta consumo de Doe Run Perú debido a la suspensión de las operaciones del Complejo Metalúrgico La Oroya desde junio de 2009.
b. Cementeras

El sector cemento (caracterizado por ser altamente intensivo en energía) consumió en el año 2017, 654 450 x 10³ kg. de carbón mineral lo cual representa una participación de 93,8% sobre el consumo final de carbón mineral en el sector industrial. Además, para el mismo año la industria cementera mostró una reducción del 11.8% en sus requerimientos de carbón mineral, respecto al 2016.

En el 2017, UNACEM (Ex Cemento Andino) fue la principal empresa consumidora de carbón mineral en el Perú en el sector industrial, con una participación durante el 2017 del 43% sobre el total del consumo final de carbón mineral, seguido de Cemento Pacasmayo S.A.A y Cemento Yura S.A., con una participación de 29,8% y 20,3%, respectivamente.

c. Ladrilleras

En el año 2017, no se registró consumo de carbón mineral para la industria ladrillera de gran tamaño como parte del consumo industrial.

10.6.6.3. Sector Pesquería

En la evaluación realizada respecto al consumo de carbón mineral durante el 2016, no se reportaron consumos en este sector.
10.6.6.4. Sector Agropecuario

Este sector emplea carbón mineral en forma de briquetas y se emplea principalmente para calefacción de animales de granja.

En el año 2017, el consumo de carbón mineral fue de 127×10^3 kg, siendo su participación 0,02 % respecto al consumo final.

Tabla 76: CONSUMO DE CARBÓN MINERAL POR SECTORES: 2017
(UNIDAD: 10^3 kg)

<table>
<thead>
<tr>
<th>TIPO DE CARBÓN</th>
<th>ANTRACITA NACIONAL</th>
<th>BITUMINOSO NACIONAL</th>
<th>IMPORTADO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.-RESIDENCIAL Y COMERCIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.-Hoteles</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>II.-INDUSTRIAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>METALURGICA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.-Doe Run Perú - La Oroya División</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2.-Corporación Aceros Arequipa S.A.</td>
<td>19 443</td>
<td>0</td>
<td>1 236</td>
<td>20 679</td>
</tr>
<tr>
<td>3.-Southern Perú Copper Corporation</td>
<td>7 445</td>
<td>0</td>
<td>0</td>
<td>7 445</td>
</tr>
<tr>
<td>4.-Siderperú</td>
<td>7 445</td>
<td>0</td>
<td>0</td>
<td>7 445</td>
</tr>
<tr>
<td>5.-Otras Mineras</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>27 675</td>
<td>14 075</td>
<td>1 236</td>
<td>42 986</td>
</tr>
<tr>
<td>CEMENTERAS Y LADRILLERAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.-UNACEM S.A.A. (Ex-Cemento Andino)</td>
<td>45 003</td>
<td>142 897</td>
<td>93 504</td>
<td>281 404</td>
</tr>
<tr>
<td>2.-Cementos Pacasmayo S.A.A.</td>
<td>168 983</td>
<td>25 997</td>
<td>0</td>
<td>194 979</td>
</tr>
<tr>
<td>3.-Cementos Selva S.A.</td>
<td>45 372</td>
<td>0</td>
<td>0</td>
<td>45 372</td>
</tr>
<tr>
<td>4.-Cemento Sur S.A.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.-Cemento Yura S.A.</td>
<td>0</td>
<td>0</td>
<td>132 695</td>
<td>132 695</td>
</tr>
<tr>
<td>6.-Caliza Cemento Inka S.A.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.- Otras ladrilleras</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.-Otras industrias</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>259 357</td>
<td>168 893</td>
<td>226 199</td>
<td>654 450</td>
</tr>
<tr>
<td>IV. PESQUERÍA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.-Pesquerías</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>V. AGROPECUARIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.- Granjas avícolas</td>
<td>127</td>
<td>0</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td>127</td>
<td>0</td>
<td>0</td>
<td>127</td>
</tr>
<tr>
<td>TOTAL</td>
<td>287 173</td>
<td>182 968</td>
<td>227 435</td>
<td>697 577</td>
</tr>
</tbody>
</table>

Fuente: Elaboración DGEE-MEM

10.6.7. Matriz y Flujo del Balance del Carbón Mineral

Este balance incluye la siguiente clasificación del carbón mineral:

a. La clasificación (ANTR), agrupa todo el carbón de tipo antracítico de origen nacional.
b. La clasificación (BITUM), agrupa todo el carbón de tipo bituminoso de origen nacional.

c. En el caso de (IMP), considera todo tipo de carbón de procedencia extranjera.

En la Tabla 77 se muestra el balance de carbón mineral en unidades originales, así mismo la matriz y el flujo en Terajoule.

Tabla 77: BALANCE DE CARBÓN MINERAL: 2017
(UNIDADES ORIGINALES)

<table>
<thead>
<tr>
<th>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA Planeamiento Energético</th>
<th>ENERGÍA PRIMARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbón Antracita</td>
</tr>
<tr>
<td></td>
<td>10^3 ton</td>
</tr>
<tr>
<td>1. Producción</td>
<td>186.4</td>
</tr>
<tr>
<td>2. Importación</td>
<td></td>
</tr>
<tr>
<td>3. Variación de Inventarios</td>
<td>454.1</td>
</tr>
<tr>
<td>4. OFERTA TOTAL</td>
<td>640.5</td>
</tr>
<tr>
<td>5. Exportación</td>
<td>(353.4)</td>
</tr>
<tr>
<td>6. No Aprovechada</td>
<td></td>
</tr>
<tr>
<td>7. Transferencias</td>
<td></td>
</tr>
<tr>
<td>7. OFERTA INTERNA BRUTA</td>
<td>287.2</td>
</tr>
<tr>
<td>8. Total Transformación</td>
<td></td>
</tr>
<tr>
<td>Coquerías y Altos Hornos</td>
<td></td>
</tr>
<tr>
<td>Carboneras</td>
<td></td>
</tr>
<tr>
<td>Refinerías</td>
<td></td>
</tr>
<tr>
<td>Plantas de Gas</td>
<td></td>
</tr>
<tr>
<td>Centrales Eléc. (Mercado Eléctrico)</td>
<td>(245.8)</td>
</tr>
<tr>
<td>Centrales Eléc. (Uso Propio)</td>
<td>(60.9)</td>
</tr>
<tr>
<td>9. Consumo Propio Sector Energía</td>
<td></td>
</tr>
<tr>
<td>10. Pérdidas (transp., distr. y almacen.)</td>
<td></td>
</tr>
<tr>
<td>11. Ajustes</td>
<td>(0.0)</td>
</tr>
<tr>
<td>12. CONSUMO FINAL TOTAL</td>
<td>287.2</td>
</tr>
<tr>
<td>12.1 Consumo Final No Energético</td>
<td></td>
</tr>
<tr>
<td>12.2 Consumo Final Energético</td>
<td>287.2</td>
</tr>
<tr>
<td>Residencial</td>
<td></td>
</tr>
<tr>
<td>Comercial</td>
<td>0.0</td>
</tr>
<tr>
<td>Público</td>
<td></td>
</tr>
<tr>
<td>Transportes</td>
<td></td>
</tr>
<tr>
<td>Agropecuario</td>
<td>0.1</td>
</tr>
<tr>
<td>Pesquería</td>
<td></td>
</tr>
<tr>
<td>Minero</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>287.0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración DGEE-MEM
Tabla 78: BALANCE DE CARBÓN MINERAL: 2017
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA</th>
<th>ENERGÍA PRIMARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planeamiento Energético</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbón</td>
</tr>
<tr>
<td></td>
<td>Carbón Bituminoso</td>
</tr>
<tr>
<td></td>
<td>Total E.P</td>
</tr>
<tr>
<td>1. Producción</td>
<td>5 460.2</td>
</tr>
<tr>
<td></td>
<td>2 847.9</td>
</tr>
<tr>
<td></td>
<td>8 308.1</td>
</tr>
<tr>
<td>2. Importación</td>
<td>14 371.4</td>
</tr>
<tr>
<td></td>
<td>14 371.4</td>
</tr>
<tr>
<td>3. Variación de Inventarios</td>
<td>13 299.7</td>
</tr>
<tr>
<td></td>
<td>1 693.3</td>
</tr>
<tr>
<td></td>
<td>16 993.9</td>
</tr>
<tr>
<td>4. OFERTA TOTAL</td>
<td>18 759.9</td>
</tr>
<tr>
<td></td>
<td>4 541.2</td>
</tr>
<tr>
<td></td>
<td>16 312.3</td>
</tr>
<tr>
<td></td>
<td>39 613.4</td>
</tr>
<tr>
<td>5. Exportación</td>
<td>(10 349.2)</td>
</tr>
<tr>
<td></td>
<td>(10 349.2)</td>
</tr>
<tr>
<td>6. No Aprovechada</td>
<td></td>
</tr>
<tr>
<td>7. Transferencias</td>
<td></td>
</tr>
<tr>
<td>7. OFERTA INTERNA BRUTA</td>
<td>8 410.7</td>
</tr>
<tr>
<td></td>
<td>4 541.2</td>
</tr>
<tr>
<td></td>
<td>16 312.3</td>
</tr>
<tr>
<td></td>
<td>29 264.2</td>
</tr>
<tr>
<td>8. Total Transformación</td>
<td></td>
</tr>
<tr>
<td>Coquerías y Altos Hornos</td>
<td></td>
</tr>
<tr>
<td>Carboneras</td>
<td></td>
</tr>
<tr>
<td>Refinerías</td>
<td></td>
</tr>
<tr>
<td>Plantas de Gas</td>
<td></td>
</tr>
<tr>
<td>Centrales Eléc. (Mercado Eléctrico)</td>
<td></td>
</tr>
<tr>
<td>Centrales Eléc. (Uso Propio)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(7 506.5)</td>
</tr>
<tr>
<td></td>
<td>(1 859.2)</td>
</tr>
<tr>
<td>9. Consumo Propio Sector Energía</td>
<td></td>
</tr>
<tr>
<td>10. Pérdidas (transp., distr. y almac.)</td>
<td></td>
</tr>
<tr>
<td>11. Ajustes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
</tr>
<tr>
<td></td>
<td>(0.0)</td>
</tr>
<tr>
<td>12. CONSUMO FINAL TOTAL</td>
<td>8 410.7</td>
</tr>
<tr>
<td></td>
<td>4 541.2</td>
</tr>
<tr>
<td></td>
<td>6 946.6</td>
</tr>
<tr>
<td></td>
<td>19 898.5</td>
</tr>
<tr>
<td>12.1 Consumo Final No Energético</td>
<td></td>
</tr>
<tr>
<td>12.2 Consumo Final Energético</td>
<td></td>
</tr>
<tr>
<td>Residencial</td>
<td></td>
</tr>
<tr>
<td>Comercial</td>
<td>0.4</td>
</tr>
<tr>
<td>Público</td>
<td></td>
</tr>
<tr>
<td>Transportes</td>
<td></td>
</tr>
<tr>
<td>Agropecuario</td>
<td>3.7</td>
</tr>
<tr>
<td>Pesquería</td>
<td></td>
</tr>
<tr>
<td>Minero</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>8 406.6</td>
</tr>
<tr>
<td></td>
<td>4 541.2</td>
</tr>
<tr>
<td></td>
<td>6 946.6</td>
</tr>
<tr>
<td></td>
<td>19 894.4</td>
</tr>
</tbody>
</table>

Fuente: Elaboración DGEE-MEM
10.7. BALANCE NACIONAL DE COQUE

10.7.1. Producción Nacional de Coque

A partir de noviembre de 2004, Doe Run Perú puso fuera de servicio su planta de producción de coque, por razones ambientales.

10.7.2. Importaciones de Coque

Durante el 2017, Doe Run Perú, no ha reportado la importación de Coque para uso en sus instalaciones. La importación mayoritaria es de origen petrolero.

Tabla 79: IMPORTACIÓN DE COQUE

<table>
<thead>
<tr>
<th>EMPRESA</th>
<th>PROCEDENCIA</th>
<th>2016</th>
<th>2017</th>
<th>VARIACIÓN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Siderperú</td>
<td>Bélgica</td>
<td>144</td>
<td>336</td>
<td>133%</td>
</tr>
<tr>
<td>Corporación Aceros Arequipa</td>
<td>China</td>
<td>40</td>
<td>280</td>
<td>600%</td>
</tr>
<tr>
<td>Cementos Sur</td>
<td>Estados Unidos</td>
<td>62 902</td>
<td>32 054</td>
<td>-49%</td>
</tr>
<tr>
<td>Cemento Yura</td>
<td>Estados Unidos</td>
<td>62 622</td>
<td>32 468</td>
<td>-48%</td>
</tr>
<tr>
<td>Otros</td>
<td></td>
<td>24</td>
<td>0</td>
<td>-100%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>125 709</td>
<td>65 138</td>
<td>-48%</td>
</tr>
</tbody>
</table>

Fuente: SUNAT

10.7.3. Consumo Total de Coque

En la Tabla 80, se muestra los consumos de coque por empresas sumando un total de 78 825 x 10³ Kg de coque para el 2017. La que tuvo un aumento en el Consumo de Coque de 36%, en comparación con el año 2016.

Tabla 80: CONSUMO DE COQUE

<table>
<thead>
<tr>
<th>AÑO</th>
<th>DOE RUN PERÚ</th>
<th>SIDERPERÚ</th>
<th>Cemento Sur</th>
<th>ACEROS AREQUIPA</th>
<th>Cemento Yura</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>0</td>
<td>0</td>
<td>50 078</td>
<td>29</td>
<td>7 683</td>
<td>57 790</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>0</td>
<td>46 245</td>
<td>206</td>
<td>32 374</td>
<td>78 825</td>
</tr>
</tbody>
</table>

Fuente: MEM

En la Ilustración 167, se muestra la estructura de consumo de coque, en la cual Cementos Sur cuenta con la una participación de 59% y Cemento Sur tiene una participación del 41%.
10.7.4. Matriz y Flujo del Balance de Coque

En la Tabla 81 se muestra el balance de coque en unidades originales; en la Tabla 82 se muestra el balance de coque en terajoules. Finalmente, en la Ilustración 168 se muestra el flujo de coque en terajoules.

Tabla 81: BALANCE DE COQUE: 2017 (UNIDADES ORIGINALES)

<table>
<thead>
<tr>
<th>DIRECCIÓN GENERAL DE EFICIENCIA ENERGÉTICA</th>
<th>ENERGÍA SECUNDARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planeamiento Energético</td>
<td>Coque 10^6 ton</td>
</tr>
<tr>
<td>1. Producción</td>
<td></td>
</tr>
<tr>
<td>2. Importación</td>
<td>65,1</td>
</tr>
<tr>
<td>3. Variación de Inventarios</td>
<td>13,7</td>
</tr>
<tr>
<td>4. OFERTA TOTAL</td>
<td>78,8</td>
</tr>
<tr>
<td>5. Exportación</td>
<td></td>
</tr>
<tr>
<td>6. No Aprovechada</td>
<td></td>
</tr>
<tr>
<td>7. Transferencias</td>
<td></td>
</tr>
<tr>
<td>7. OFERTA INTERNA BRUTA</td>
<td>78,8</td>
</tr>
<tr>
<td>8. Total Transformación</td>
<td></td>
</tr>
<tr>
<td>Coquerías y Altos Hornos</td>
<td></td>
</tr>
<tr>
<td>Carboneras</td>
<td></td>
</tr>
<tr>
<td>Refinerías</td>
<td></td>
</tr>
<tr>
<td>Plantas de Gas</td>
<td></td>
</tr>
<tr>
<td>Centrales Eléc. (Mercado Eléctrico)</td>
<td></td>
</tr>
<tr>
<td>Centrales Eléc. (Uso Propio)</td>
<td></td>
</tr>
<tr>
<td>9. Consumo Propio Sector Energía</td>
<td></td>
</tr>
<tr>
<td>10. Pérdidas (transp., distr. y almac.)</td>
<td></td>
</tr>
<tr>
<td>11. Ajustes</td>
<td></td>
</tr>
<tr>
<td>12. CONSUMO FINAL TOTAL</td>
<td>78,8</td>
</tr>
<tr>
<td>12.1 Consumo Final No Energético</td>
<td></td>
</tr>
<tr>
<td>12.2 Consumo Final Energético</td>
<td>78,8</td>
</tr>
<tr>
<td>Residencial</td>
<td></td>
</tr>
<tr>
<td>Comercial</td>
<td></td>
</tr>
<tr>
<td>Público</td>
<td></td>
</tr>
<tr>
<td>Transportes</td>
<td></td>
</tr>
<tr>
<td>Agropecuario</td>
<td></td>
</tr>
<tr>
<td>Pesquería</td>
<td></td>
</tr>
<tr>
<td>Minero</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>78,8</td>
</tr>
</tbody>
</table>

Elaboración: DGEE-MEM
<table>
<thead>
<tr>
<th>Dirección General de Eficiencia Energética</th>
<th>ENERGÍA SECUNDARIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFERTA</td>
<td>Coque</td>
</tr>
<tr>
<td>1. Producción</td>
<td>1 744,2</td>
</tr>
<tr>
<td>2. Importación</td>
<td>366,5</td>
</tr>
<tr>
<td>3. Variación de Inventarios</td>
<td></td>
</tr>
<tr>
<td>4. OFERTA TOTAL</td>
<td>2 110,8</td>
</tr>
<tr>
<td>5. Exportación</td>
<td></td>
</tr>
<tr>
<td>6. No Aprovechada</td>
<td></td>
</tr>
<tr>
<td>7. Transferencias</td>
<td></td>
</tr>
<tr>
<td>7. OFERTA INTERNA BRUTA</td>
<td>2 110,8</td>
</tr>
<tr>
<td>TRANSFORMACIÓN</td>
<td></td>
</tr>
<tr>
<td>8. Total Transformación</td>
<td></td>
</tr>
<tr>
<td>Coquerías y Altos Hornos</td>
<td></td>
</tr>
<tr>
<td>Carboneras</td>
<td></td>
</tr>
<tr>
<td>Refinerías</td>
<td></td>
</tr>
<tr>
<td>Plantas de Gas</td>
<td></td>
</tr>
<tr>
<td>Centrales Eléc. (Mercado Eléctrico)</td>
<td></td>
</tr>
<tr>
<td>Centrales Eléc. (Uso Propio)</td>
<td></td>
</tr>
<tr>
<td>9. Consumo Propio Sector Energía</td>
<td></td>
</tr>
<tr>
<td>10. Pérdidas (transp., distr. y almac.)</td>
<td></td>
</tr>
<tr>
<td>11. Ajustes</td>
<td></td>
</tr>
<tr>
<td>CONSUMO FINAL TOTAL</td>
<td>2 110,8</td>
</tr>
<tr>
<td>12.1 Consumo Final No Energético</td>
<td></td>
</tr>
<tr>
<td>Residencial</td>
<td></td>
</tr>
<tr>
<td>Comercial</td>
<td></td>
</tr>
<tr>
<td>Público</td>
<td></td>
</tr>
<tr>
<td>Transportes</td>
<td></td>
</tr>
<tr>
<td>Agropecuario</td>
<td></td>
</tr>
<tr>
<td>Pesquería</td>
<td></td>
</tr>
<tr>
<td>Minero</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
</tr>
<tr>
<td>12.2 Consumo Final Energético</td>
<td>2 110,8</td>
</tr>
</tbody>
</table>

Elaboración: DGEE-MEM
Ilustración 168: BALANCE DE CARBON (UNIDAD: TJ)

Elaboración: DGEE-MEM

Ilustración 169: BALANCE DE COQUE (UNIDAD: TJ)

Elaboración: DGEE-MEM
10.8. **BALANCE NACIONAL DE GAS INDUSTRIAL**

10.8.1. **Producción nacional de Gas Industrial**

La producción de gas industrial agrupa esencialmente los gases de alto horno de las empresas Siderperú y Doe Run Perú, que para el año 2017, no han reportado información respecto a esta fuente energética.

Para el caso de Siderperú, la empresa tomó la decisión de apagar su Alto Horno a finales del año 2008 debido al contexto económico y a la necesidad de implementar mejoras tecnológicas en los equipos de producción. Actualmente utiliza Horno eléctrico.

En el caso de Doe Run Perú, las operaciones del Complejo Metalúrgico La Oroya se encuentran paralizadas desde junio de 2009, realizándose temporalmente solo trabajos de mantenimiento. En julio de 2012 se anuncia el reinicio de las actividades en el circuito de zinc.

Por lo tanto, durante el año 2017 no se ha registrado producción de gas industrial.

10.8.2. **Consumo total de Gas Industrial**

En Siderperú, el gas industrial obtenido de su alto horno se aprovechaba parcialmente en hornos de calentamiento de laminados planos, hornos de cal y generadores de vapor. De forma similar, el gas industrial producido en los altos hornos de Doe Run eran utilizados como fuente de calor en su proceso productivo, sin embargo durante el 2017 dichas empresas no han reportado producción o consumo de gas industrial.
XI. ANEXOS

11.1. CONSUMO FINAL GLOBAL Y CONSUMOS SECTORIALES

Tabla 83: CONSUMO FINAL DE ENERGÉTICOS
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón Mineral</td>
<td>22 896</td>
<td>23 901</td>
<td>24 022</td>
<td>22 959</td>
<td>26 519</td>
<td>29 206</td>
<td>23 286</td>
<td>19 899</td>
</tr>
<tr>
<td>Leña</td>
<td>108 417</td>
<td>104 813</td>
<td>102 109</td>
<td>100 554</td>
<td>101 685</td>
<td>96 909</td>
<td>95 675</td>
<td>90 430</td>
</tr>
<tr>
<td>Bosta/Yareta</td>
<td>6 627</td>
<td>7 938</td>
<td>7 167</td>
<td>6 775</td>
<td>6 520</td>
<td>6 021</td>
<td>5 967</td>
<td>5 269</td>
</tr>
<tr>
<td>Bagazo</td>
<td>6 246</td>
<td>6 144</td>
<td>8 713</td>
<td>5 427</td>
<td>1 362</td>
<td>5 174</td>
<td>6 575</td>
<td>2 709</td>
</tr>
<tr>
<td>Solar</td>
<td>239</td>
<td>263</td>
<td>287</td>
<td>311</td>
<td>335</td>
<td>1 067</td>
<td>1 383</td>
<td>1 382</td>
</tr>
<tr>
<td>No Energéticos</td>
<td>2 267</td>
<td>2 132</td>
<td>2 326</td>
<td>2 290</td>
<td>2 725</td>
<td>3 939</td>
<td>2 090</td>
<td>2 593</td>
</tr>
<tr>
<td>Total E. Prim.</td>
<td>148 691</td>
<td>145 191</td>
<td>144 623</td>
<td>138 306</td>
<td>139 146</td>
<td>142 316</td>
<td>134 975</td>
<td>122 281</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ÁREA SECUNDARIA</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbón Vegetal</td>
<td>6 608</td>
<td>6 605</td>
<td>6 223</td>
<td>6 171</td>
<td>5 417</td>
<td>5 087</td>
<td>4 616</td>
<td>4393</td>
</tr>
<tr>
<td>Gas Lic. de Pet.</td>
<td>52 699</td>
<td>58 787</td>
<td>64 405</td>
<td>71 386</td>
<td>72 511</td>
<td>75 002</td>
<td>79 352</td>
<td>82 800</td>
</tr>
<tr>
<td>Gasolina Motor/Gasohol</td>
<td>56 845</td>
<td>58 551</td>
<td>60 622</td>
<td>64 242</td>
<td>67 464</td>
<td>74 681</td>
<td>83 681</td>
<td>86 949</td>
</tr>
<tr>
<td>Kerosene/Turbo</td>
<td>27 961</td>
<td>29 760</td>
<td>30 915</td>
<td>33 750</td>
<td>37 208</td>
<td>39 187</td>
<td>43 449</td>
<td>44 215</td>
</tr>
<tr>
<td>Diesel C1/D2/D3</td>
<td>185 683</td>
<td>190 235</td>
<td>197 309</td>
<td>208 975</td>
<td>204 763</td>
<td>219 296</td>
<td>227 524</td>
<td>224 052</td>
</tr>
<tr>
<td>P. Industrial</td>
<td>13 741</td>
<td>22 834</td>
<td>15 759</td>
<td>17 094</td>
<td>9 416</td>
<td>9 264</td>
<td>9 310</td>
<td>10 069</td>
</tr>
<tr>
<td>Gas Natural</td>
<td>46 959</td>
<td>65 041</td>
<td>61 921</td>
<td>70 005</td>
<td>76 132</td>
<td>79 987</td>
<td>81 455</td>
<td>89 551</td>
</tr>
<tr>
<td>No Energéticos</td>
<td>35 585</td>
<td>33 195</td>
<td>29 464</td>
<td>16 040</td>
<td>12 688</td>
<td>12 758</td>
<td>11 229</td>
<td>12 713</td>
</tr>
<tr>
<td>Gas Industrial</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electricidad</td>
<td>113 692</td>
<td>126 390</td>
<td>130 499</td>
<td>137 734</td>
<td>142 917</td>
<td>151 523</td>
<td>164 279</td>
<td>167 191</td>
</tr>
<tr>
<td>Total E. Secund.</td>
<td>539 775</td>
<td>591 499</td>
<td>597 137</td>
<td>626 415</td>
<td>631 966</td>
<td>667 905</td>
<td>707 373</td>
<td>724 043</td>
</tr>
<tr>
<td>TOTAL ENERGÍA</td>
<td>688 466</td>
<td>736 690</td>
<td>741 760</td>
<td>764 721</td>
<td>771 112</td>
<td>810 221</td>
<td>842 347</td>
<td>846 324</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>4.8%</td>
<td>7.0%</td>
<td>0.7%</td>
<td>3.1%</td>
<td>0.8%</td>
<td>5.1%</td>
<td>4.0%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

| PBI (Miles de N.S. de 2007) | 382 081| 406 256| 431 199| 456 435| 467 280| 482 473| 501 537| 514 217|
| TASA DE CRECIMIENTO | 8.33% | 6.33% | 6.14% | 5.85% | 2.38% | 3.25% | 3.95% | 2.53% |

<table>
<thead>
<tr>
<th>POBLACIÓN</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles de Habitantes</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

ELASTICIDADES								
CONS ENERGÍA/PBI	0.58	1.11	0.11	0.53	0.35	1.56	1.00	0.19
CONS ENERGÍA/POB	4.24	6.15	0.61	2.75	0.75	4.63	3.67	0.44

2 El D.S. Nº 025-2010-EM establece la ampliación del plazo de comercialización de kerosene hasta el 2010. Siendo eliminado totalmente durante el año 2011.
Tabla 84: CONSUMO DE ENERGÍA EN EL SECTOR RESIDENCIAL

(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>Año</th>
<th>Carbón Mineral</th>
<th>Leña</th>
<th>Bosta/Yareta</th>
<th>Solar</th>
<th>Total E. Prim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
<td>92,997</td>
<td>8,627</td>
<td>130</td>
<td>100,854</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>88,385</td>
<td>7,938</td>
<td>143</td>
<td>96,466</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>85,548</td>
<td>7,167</td>
<td>80</td>
<td>92,795</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>83,950</td>
<td>6,775</td>
<td>88</td>
<td>90,813</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>85,085</td>
<td>6,520</td>
<td>96</td>
<td>91,701</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>80,363</td>
<td>6,021</td>
<td>650</td>
<td>87,034</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>79,197</td>
<td>5,967</td>
<td>819</td>
<td>85,983</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>74,068</td>
<td>5,269</td>
<td>837</td>
<td>80,175</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>4,461</td>
<td>27,805</td>
<td>100</td>
<td>578</td>
<td>0</td>
<td>0</td>
<td>252</td>
<td>27,377</td>
<td>60,472</td>
</tr>
<tr>
<td>2011</td>
<td>4,462</td>
<td>29,391</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>424</td>
<td>30,418</td>
<td>64,696</td>
</tr>
<tr>
<td>2012</td>
<td>4,029</td>
<td>31,637</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>721</td>
<td>31,407</td>
<td>67,794</td>
</tr>
<tr>
<td>2013</td>
<td>3,989</td>
<td>33,017</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,055</td>
<td>31,522</td>
<td>69,583</td>
</tr>
<tr>
<td>2014</td>
<td>3,210</td>
<td>33,776</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1,773</td>
<td>32,108</td>
<td>70,866</td>
</tr>
<tr>
<td>2015</td>
<td>2,899</td>
<td>35,232</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2,492</td>
<td>33,130</td>
<td>73,752</td>
</tr>
<tr>
<td>2016</td>
<td>2,467</td>
<td>36,837</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3,197</td>
<td>33,846</td>
<td>76,346</td>
</tr>
<tr>
<td>2017</td>
<td>2,253</td>
<td>37,302</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4,025</td>
<td>34,447</td>
<td>78,027</td>
</tr>
</tbody>
</table>

Resumen

- **ENERGÍA SECUNDARIA**: total consumo de energía secundaria de 60,472 TJ en 2010, aumentando a 78,027 TJ en 2017.
- **TOTAL ENERGÍA**: consumo total de energía de 221,808 TJ en 2010, disminuyendo a 236,229 TJ en 2017.

Tabla 85: CONSUMO DE ENERGÍA EN EL SECTOR COMERCIAL
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGÍA PRIMARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leña</td>
<td>2 470</td>
<td>2 744</td>
<td>3 041</td>
<td>3 247</td>
<td>3 416</td>
<td>3 528</td>
<td>3 628</td>
<td>3 675</td>
</tr>
<tr>
<td>Bosta/Yareta</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solar</td>
<td>105</td>
<td>115</td>
<td>202</td>
<td>218</td>
<td>234</td>
<td>406</td>
<td>557</td>
<td>533</td>
</tr>
<tr>
<td>Total E. Prim.</td>
<td>2 583</td>
<td>2 868</td>
<td>3 250</td>
<td>3 471</td>
<td>3 656</td>
<td>3 938</td>
<td>4 185</td>
<td>4 209</td>
</tr>
<tr>
<td>ENERGÍA SECUNDARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>611</td>
<td>678</td>
<td>752</td>
<td>803</td>
<td>845</td>
<td>872</td>
<td>897</td>
<td>909</td>
</tr>
<tr>
<td>Gas Lic. de Pet.</td>
<td>2 657</td>
<td>2 840</td>
<td>2 978</td>
<td>3 309</td>
<td>3 156</td>
<td>3 541</td>
<td>3 651</td>
<td>3 782</td>
</tr>
<tr>
<td>Gasolina Motor/Gasohol</td>
<td>35</td>
<td>21</td>
<td>13</td>
<td>11</td>
<td>12</td>
<td>16</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Kerosene</td>
<td>26</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diesel Oil/DB2/DB5</td>
<td>3 341</td>
<td>3 281</td>
<td>3 286</td>
<td>3 333</td>
<td>2 930</td>
<td>3 270</td>
<td>3 270</td>
<td>3 224</td>
</tr>
<tr>
<td>Petróleo Industrial</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gas Natural</td>
<td>267</td>
<td>342</td>
<td>432</td>
<td>530</td>
<td>622</td>
<td>781</td>
<td>900</td>
<td>1 048</td>
</tr>
<tr>
<td>Electricidad</td>
<td>17 851</td>
<td>19 609</td>
<td>20 247</td>
<td>21 657</td>
<td>21 680</td>
<td>23 302</td>
<td>23 812</td>
<td>24 256</td>
</tr>
<tr>
<td>Total E. Secund.</td>
<td>24 797</td>
<td>26 781</td>
<td>27 712</td>
<td>29 844</td>
<td>29 245</td>
<td>31 784</td>
<td>32 552</td>
<td>33 237</td>
</tr>
<tr>
<td>TOTAL ENERGÍA</td>
<td>27 379</td>
<td>29 649</td>
<td>30 962</td>
<td>33 131</td>
<td>32 900</td>
<td>35 722</td>
<td>36 736</td>
<td>37 446</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>6.5%</td>
<td>8.3%</td>
<td>4.4%</td>
<td>7.6%</td>
<td>-1.2%</td>
<td>8.6%</td>
<td>2.8%</td>
<td>1.9%</td>
</tr>
<tr>
<td>PBI (Millones de N.S. de 2007)</td>
<td>382 081</td>
<td>406 256</td>
<td>431 199</td>
<td>456 435</td>
<td>467 280</td>
<td>482 473</td>
<td>501 537</td>
<td>514 217</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>8.33%</td>
<td>6.33%</td>
<td>6.14%</td>
<td>5.85%</td>
<td>2.38%</td>
<td>2.25%</td>
<td>3.95%</td>
<td>2.53%</td>
</tr>
<tr>
<td>POBLACIÓN (Miles de Habitantes)</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>ELASTICIDADES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONS. ENERGÍA/PBI</td>
<td>0.77</td>
<td>1.31</td>
<td>0.72</td>
<td>1.30</td>
<td>-0.52</td>
<td>2.64</td>
<td>0.72</td>
<td>0.76</td>
</tr>
<tr>
<td>CONS. ENERGÍA/POB</td>
<td>5.70</td>
<td>7.27</td>
<td>3.90</td>
<td>6.75</td>
<td>-1.12</td>
<td>7.83</td>
<td>2.63</td>
<td>1.81</td>
</tr>
</tbody>
</table>

2 El D.S. Nº 025-2010-EM establece la ampliación del plazo de comercialización de kerosene hasta el 2010. Siendo eliminado totalmente durante el año 2011.
Tabla 86: CONSUMO DE ENERGÍA EN EL SECTOR PÚBLICO
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGÍA PRIMARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Leña</td>
<td>137</td>
<td>132</td>
<td>122</td>
<td>118</td>
<td>112</td>
<td>108</td>
<td>103</td>
<td>99</td>
</tr>
<tr>
<td>Total Energía primaria</td>
<td>140</td>
<td>135</td>
<td>125</td>
<td>120</td>
<td>115</td>
<td>113</td>
<td>103</td>
<td>101</td>
</tr>
<tr>
<td>ENERGÍA SECUNDARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon vegetal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gas Lic. de Pet.</td>
<td>46</td>
<td>47</td>
<td>50</td>
<td>52</td>
<td>53</td>
<td>55</td>
<td>56</td>
<td>58</td>
</tr>
<tr>
<td>Gasolina Motor/Gasohol</td>
<td>6 603</td>
<td>6 486</td>
<td>7 238</td>
<td>8 262</td>
<td>8 229</td>
<td>9 237</td>
<td>7 354</td>
<td>5 577</td>
</tr>
<tr>
<td>Kero/Turbo</td>
<td>2 147</td>
<td>2 025</td>
<td>2 166</td>
<td>2 361</td>
<td>2 352</td>
<td>2 640</td>
<td>2 102</td>
<td>1 594</td>
</tr>
<tr>
<td>Diesel OILDB2/OILDB5</td>
<td>3 274</td>
<td>3 210</td>
<td>3 575</td>
<td>4 074</td>
<td>4 057</td>
<td>4 554</td>
<td>3 626</td>
<td>2 750</td>
</tr>
<tr>
<td>Pet. Industrial</td>
<td>77</td>
<td>64</td>
<td>59</td>
<td>52</td>
<td>52</td>
<td>58</td>
<td>46</td>
<td>35</td>
</tr>
<tr>
<td>Electricidad</td>
<td>5 217</td>
<td>5 867</td>
<td>6 058</td>
<td>5 999</td>
<td>6 446</td>
<td>6 937</td>
<td>7 441</td>
<td>7 580</td>
</tr>
<tr>
<td>Gas natural</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total Energía secundaria</td>
<td>17 364</td>
<td>17 702</td>
<td>19 146</td>
<td>20 801</td>
<td>21 191</td>
<td>23 484</td>
<td>20 628</td>
<td>17 595</td>
</tr>
<tr>
<td>TOTAL ENERGÍA</td>
<td>17 504</td>
<td>17 837</td>
<td>19 271</td>
<td>20 921</td>
<td>21 306</td>
<td>23 597</td>
<td>20 731</td>
<td>17 696</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PBI (Millones de N.S. de 2007)</td>
<td>382 081</td>
<td>406 256</td>
<td>431 199</td>
<td>456 435</td>
<td>467 280</td>
<td>482 473</td>
<td>501 537</td>
<td>514 217</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>3.3%</td>
<td>6.3%</td>
<td>6.1%</td>
<td>5.9%</td>
<td>2.4%</td>
<td>3.3%</td>
<td>4.0%</td>
<td>2.5%</td>
</tr>
<tr>
<td>POBLACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miles de Habitantes</td>
<td>28</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>COEFICIENTES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONS. ENERGÍA/PBI</td>
<td>0.30</td>
<td>0.30</td>
<td>1.31</td>
<td>1.46</td>
<td>0.77</td>
<td>3.31</td>
<td>-3.07</td>
<td>-5.79</td>
</tr>
<tr>
<td>CONS. ENERGÍA/POB</td>
<td>2.21</td>
<td>1.67</td>
<td>7.08</td>
<td>7.61</td>
<td>6.15</td>
<td>9.82</td>
<td>-11.23</td>
<td>-13.70</td>
</tr>
</tbody>
</table>

El D.S. Nº 025-2010-EM establece la ampliación del plazo de comercialización de kerosene hasta el 2010. Siendo eliminado totalmente durante el año 2011.

Tabla 87: CONSUMO DE ENERGÍA EN EL SECTOR AGROPECUARIO

(UNIDAD: TJ)

<table>
<thead>
<tr>
<th>AÑO</th>
<th>Leña</th>
<th>Bagazo</th>
<th>Solar</th>
<th>Carbón Mineral</th>
<th>Total E. Prim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>105</td>
<td>0</td>
<td>1</td>
<td>76</td>
<td>182</td>
</tr>
<tr>
<td>2011</td>
<td>100</td>
<td>0</td>
<td>1</td>
<td>82</td>
<td>183</td>
</tr>
<tr>
<td>2012</td>
<td>99</td>
<td>0</td>
<td>2</td>
<td>73</td>
<td>174</td>
</tr>
<tr>
<td>2013</td>
<td>94</td>
<td>0</td>
<td>3</td>
<td>61</td>
<td>158</td>
</tr>
<tr>
<td>2014</td>
<td>93</td>
<td>0</td>
<td>3</td>
<td>61</td>
<td>157</td>
</tr>
<tr>
<td>2015</td>
<td>92</td>
<td>0</td>
<td>5</td>
<td>35</td>
<td>132</td>
</tr>
<tr>
<td>2016</td>
<td>91</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>101</td>
</tr>
<tr>
<td>2017</td>
<td>90</td>
<td>0</td>
<td>7</td>
<td>4</td>
<td>100</td>
</tr>
</tbody>
</table>

ENERGÍA SECUNDARIA

<table>
<thead>
<tr>
<th>AÑO</th>
<th>Carbón Vegetal</th>
<th>Gas Licuado de Petróleo</th>
<th>Gasolina Motor/Gasohol</th>
<th>Kerosene 2</th>
<th>Diesel Oil/DB2/DB5 3</th>
<th>Petróleo Industrial</th>
<th>Gas Natural</th>
<th>Electricidad</th>
<th>Total E. Secund.</th>
<th>TOTAL ENERGÍA</th>
<th>TASA DE CRECIMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
<td>34</td>
<td>132</td>
<td>0</td>
<td>1.765</td>
<td>0</td>
<td>48</td>
<td>1.995</td>
<td>3.975</td>
<td>4.157</td>
<td>9%</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
<td>41</td>
<td>103</td>
<td>0</td>
<td>1.723</td>
<td>0</td>
<td>70</td>
<td>2.598</td>
<td>4.536</td>
<td>4.719</td>
<td>14%</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>51</td>
<td>89</td>
<td>0</td>
<td>1.719</td>
<td>0</td>
<td>70</td>
<td>2.682</td>
<td>4.600</td>
<td>4.775</td>
<td>1%</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>57</td>
<td>80</td>
<td>0</td>
<td>1.723</td>
<td>0</td>
<td>59</td>
<td>3.558</td>
<td>5.484</td>
<td>5.642</td>
<td>16%</td>
</tr>
<tr>
<td>2014</td>
<td>0</td>
<td>58</td>
<td>77</td>
<td>0</td>
<td>1.673</td>
<td>0</td>
<td>65</td>
<td>3.098</td>
<td>5.130</td>
<td>5.644</td>
<td>18%</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
<td>62</td>
<td>90</td>
<td>0</td>
<td>1.692</td>
<td>0</td>
<td>68</td>
<td>3.334</td>
<td>5.249</td>
<td>5.793</td>
<td>9%</td>
</tr>
<tr>
<td>2016</td>
<td>0</td>
<td>68</td>
<td>98</td>
<td>0</td>
<td>1.697</td>
<td>0</td>
<td>71</td>
<td>3.589</td>
<td>5.523</td>
<td>5.982</td>
<td>5%</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
<td>77</td>
<td>68</td>
<td>0</td>
<td>1.685</td>
<td>0</td>
<td>71</td>
<td>3.656</td>
<td>5.67</td>
<td>5.667</td>
<td>1%</td>
</tr>
</tbody>
</table>

PBI

<table>
<thead>
<tr>
<th>(Millones de N.S. de 2007)</th>
<th>382 081</th>
<th>406 256</th>
<th>431 199</th>
<th>456 435</th>
<th>467 280</th>
<th>482 473</th>
<th>501 537</th>
<th>514 217</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>8.3%</td>
<td>6.3%</td>
<td>6.1%</td>
<td>5.9%</td>
<td>5.9%</td>
<td>4.0%</td>
<td>2.5%</td>
<td></td>
</tr>
</tbody>
</table>

POBLACIÓN

<table>
<thead>
<tr>
<th>Miles de Habitantes</th>
<th>29</th>
<th>30</th>
<th>30.5</th>
<th>30.8</th>
<th>30.8</th>
<th>31.2</th>
<th>31.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
</tr>
</tbody>
</table>

ELASTICIDADES

<table>
<thead>
<tr>
<th>CONS.ENERGÍA/PBI</th>
<th>1.07</th>
<th>2.13</th>
<th>0.19</th>
<th>3.10</th>
<th>-3.81</th>
<th>-1.42</th>
<th>1.14</th>
</tr>
</thead>
</table>

2. El D.S. № 025-2010-EM establece la ampliación del plazo de comercialización de kerosene hasta el 2010. Siendo eliminado totalmente durante el año 2011.
Tabla 88: CONSUMO DE ENERGÍA EN EL SECTOR PESQUERO
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGÍA PRIMARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leña</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>Total E. Primaria</td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>ENERGÍA SECUNDARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas Licuado de Petróleo</td>
<td>13</td>
<td>25</td>
<td>15</td>
<td>20</td>
<td>13</td>
<td>16</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Gasolina Motor/Gasohol 1</td>
<td>115</td>
<td>219</td>
<td>122</td>
<td>182</td>
<td>99</td>
<td>152</td>
<td>158</td>
<td>103</td>
</tr>
<tr>
<td>Kerosene 2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diesel B5</td>
<td>4 853</td>
<td>2 077</td>
<td>2 809</td>
<td>2 336</td>
<td>2 856</td>
<td>2 519</td>
<td>2 749</td>
<td>2 558</td>
</tr>
<tr>
<td>Pet. Industrial</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gas Natural</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Electricidad</td>
<td>815</td>
<td>1 028</td>
<td>1 062</td>
<td>960</td>
<td>1 018</td>
<td>1 082</td>
<td>913</td>
<td>930</td>
</tr>
<tr>
<td>Total E. Secund.</td>
<td>5 796</td>
<td>3 350</td>
<td>4 007</td>
<td>3 497</td>
<td>3 986</td>
<td>3 769</td>
<td>3 835</td>
<td>3 607</td>
</tr>
<tr>
<td>TOTAL ENERGÍA</td>
<td>5 825</td>
<td>3 350</td>
<td>4 007</td>
<td>3 523</td>
<td>4 011</td>
<td>3 794</td>
<td>3 859</td>
<td>3 631</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>29%</td>
<td>-42%</td>
<td>19%</td>
<td>-13%</td>
<td>14%</td>
<td>-5%</td>
<td>2%</td>
<td>-6%</td>
</tr>
<tr>
<td>PBI</td>
<td>382 081</td>
<td>406 256</td>
<td>431 199</td>
<td>456 435</td>
<td>467 280</td>
<td>482 473</td>
<td>501 537</td>
<td>514 217</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>8.3%</td>
<td>6.3%</td>
<td>6.1%</td>
<td>5.9%</td>
<td>2.4%</td>
<td>3.3%</td>
<td>4.0%</td>
<td>2.5%</td>
</tr>
<tr>
<td>POBLACIÓN</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30.5</td>
<td>30.8</td>
<td>31.2</td>
<td>31.5</td>
<td>31.8</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>ELASTICIDADES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONS. ENERGÍA/PBI</td>
<td>3.49</td>
<td>-6.64</td>
<td>3.17</td>
<td>-2.16</td>
<td>5.83</td>
<td>-1.66</td>
<td>0.43</td>
<td>-2.34</td>
</tr>
<tr>
<td>CONS. ENERGÍA/POB</td>
<td>25.65</td>
<td>-36.88</td>
<td>17.14</td>
<td>-11.25</td>
<td>12.45</td>
<td>-4.93</td>
<td>1.58</td>
<td>-5.53</td>
</tr>
</tbody>
</table>

2 El D.S. N° 025-2010-EM establece la ampliación del plazo de comercialización de kerosene hasta el 2010.
Tabla 89: CONSUMO DE ENERGÍA EN EL SECTOR MINERO
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGÍA PRIMARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Leña</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total E. Prim.</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ENERGÍA SECUNDARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coque</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Gas Lic. de Pet.</td>
<td>1 030</td>
<td>1 139</td>
<td>1 129</td>
<td>1 504</td>
<td>1 366</td>
<td>1 978</td>
<td>2 425</td>
<td></td>
</tr>
<tr>
<td>Gas Natural</td>
<td>4 426</td>
<td>6 461</td>
<td>5 473</td>
<td>6 055</td>
<td>6 297</td>
<td>6 533</td>
<td>6 540</td>
<td>7 514</td>
</tr>
<tr>
<td>Gasolina Motor/Gasohol</td>
<td>229</td>
<td>761</td>
<td>1 545</td>
<td>1 451</td>
<td>1 974</td>
<td>2 829</td>
<td>2 712</td>
<td></td>
</tr>
<tr>
<td>Kerosene²</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Diesel BS³</td>
<td>11 374</td>
<td>10 917</td>
<td>10 801</td>
<td>11 171</td>
<td>10 503</td>
<td>11 936</td>
<td>11 719</td>
<td></td>
</tr>
<tr>
<td>Pét. Industrial</td>
<td>248</td>
<td>327</td>
<td>124</td>
<td>108</td>
<td>62</td>
<td>49</td>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>Gas Industrial</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricidad</td>
<td>28 853</td>
<td>31 438</td>
<td>32 460</td>
<td>33 374</td>
<td>37 404</td>
<td>37 893</td>
<td>52 795</td>
<td>53 790</td>
</tr>
<tr>
<td>Total E. Secund.</td>
<td>46 188</td>
<td>51 045</td>
<td>51 933</td>
<td>53 664</td>
<td>56 999</td>
<td>60 910</td>
<td>76 101</td>
<td>78 179</td>
</tr>
<tr>
<td>TOTAL ENERGÍA</td>
<td>46 188</td>
<td>51 048</td>
<td>51 936</td>
<td>53 668</td>
<td>57 002</td>
<td>58 913</td>
<td>76 104</td>
<td>78 183</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>8.1%</td>
<td>10.5%</td>
<td>10.5%</td>
<td>4.1%</td>
<td>6.2%</td>
<td>3.4%</td>
<td>2.9%</td>
<td>2.7%</td>
</tr>
<tr>
<td>PBI (Millones de N.S. de 2007)</td>
<td>382 081</td>
<td>406 256</td>
<td>431 199</td>
<td>456 435</td>
<td>467 280</td>
<td>482 473</td>
<td>501 537</td>
<td>514 217</td>
</tr>
<tr>
<td>POBLACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miles de Habitantes</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
<td>1.1%</td>
</tr>
<tr>
<td>ELASTICIDADES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONS. ENERGÍA/PBI</td>
<td>0.97</td>
<td>1.66</td>
<td>0.16</td>
<td>0.71</td>
<td>2.62</td>
<td>1.03</td>
<td>7.38</td>
<td>1.08</td>
</tr>
<tr>
<td>CONS. ENERGÍA/POB</td>
<td>7.17</td>
<td>9.23</td>
<td>0.84</td>
<td>3.67</td>
<td>5.59</td>
<td>3.06</td>
<td>26.98</td>
<td>2.56</td>
</tr>
</tbody>
</table>
Tabla 90: CONSUMO DE ENERGÍA EN EL SECTOR INDUSTRIAL
(UNIDAD: TJ)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGÍA PRIMARIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón Mineral</td>
<td>22 812</td>
<td>23 810</td>
<td>23 940</td>
<td>22 891</td>
<td>26 451</td>
<td>29 167</td>
<td>23 281</td>
<td>19 894</td>
</tr>
<tr>
<td>Leña</td>
<td>13 576</td>
<td>13 423</td>
<td>13 270</td>
<td>13 116</td>
<td>12 952</td>
<td>12 790</td>
<td>12 629</td>
<td>12 471</td>
</tr>
<tr>
<td>Bagazo</td>
<td>6 246</td>
<td>6 144</td>
<td>8 713</td>
<td>5 427</td>
<td>1 362</td>
<td>5 174</td>
<td>6 575</td>
<td>2 709</td>
</tr>
<tr>
<td>Solar</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total E. Prim.</td>
<td>42 633</td>
<td>43 376</td>
<td>45 923</td>
<td>41 434</td>
<td>40 765</td>
<td>47 131</td>
<td>42 485</td>
<td>35 076</td>
</tr>
</tbody>
</table>

ENERGÍA SECUNDARIA								
Carbón Vegetal	1,535	1,463	1,441	1,379	1,361	1,316	1,251	1,231
Coque	0	0	0	0	2	1	1	1
Gas Lic. de Pet.	10 120	12 791	13 167	16 357	15 023	13 655	13 947	15 622
Gasolina Motor/Gasohol	8	3	1	1	1	1	1	1
Kerosene	12	0	0	0	0	0	0	0
Diesel O/E/DB	10 235	10 095	9 914	10 030	8 213	6 761	6 112	4 728
Pet. Industrial	12 411	16 310	6 917	7 364	3 616	3 206	1 912	2 706
Gas Natural	27 875	40 709	34 299	37 840	40 747	42 957	43 263	48 327
Gas Industrial	0	0	0	0	0	0	0	0
Electricidad	31 585	35 419	36 570	40 452	41 931	45 673	41 720	42 351
Total E. Secund.	93 782	116 789	102 328	114 438	112 459	114 685	110 282	117 075
TOTAL ENERGÍA	136 415	160 165	148 251	155 872	153 224	161 816	152 767	152 152

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TASA DE CRECIMIENTO</td>
<td>6%</td>
<td>17%</td>
<td>7%</td>
<td>5%</td>
<td>2%</td>
<td>6%</td>
<td>6%</td>
<td>5.40%</td>
</tr>
</tbody>
</table>

2 El D.S. N°025-2010-EM establece la ampliación del plazo de comercialización de kerosene hasta el 2010. Siendo eliminado totalmente durante el año 2011.
11.2. **ESTIMACIÓN DEL CONSUMO DE BIOMASA POR DEPARTAMENTO**

Conforme a la metodología propuesta para la estimación del consumo nacional de Biomasa (Leña, Bota y Yareta, y Carbón Vegetal) se ha podido estimar el consumo de dichos energéticos a nivel departamental.

En la parte derecha de la Ilustración 171 se observa el consumo estimado de Leña por departamento para el año 2017, mientras que en la parte izquierda se muestra el consumo estimado en el año 2000. Se puede apreciar una reducción general del consumo en los 25 departamentos a excepción de Cerro de Pasco, Huancavelica, Ayacucho y Apurímac.

Ilustración 170: CONSUMO DE LEÑA POR DEPARTAMENTO – SECTOR RESIDENCIAL (UNIDAD: TJ)

De otro lado, la Ilustración 171 muestra los resultados de la estimación del consumo de carbón vegetal en el año 2000 y 2017, respectivamente. A nivel nacional, se puede apreciar una reducción general del consumo del carbón vegetal; no obstante, se ha determinado un incremento del consumo en los departamentos de Apurímac, Arequipa, Ayacucho, Cusco, Madre de Dios, Moquegua, San Martin y Tacna.

Fuente: Elaboración Propia
Finalmente, en la Ilustración 172 se muestran los resultados de la estimación del consumo de Bosta y Yareta para el año 2000 y 2017, respectivamente. En general, se puede apreciar una reducción del consumo en los departamentos que consumen dicho commodity.

Fuente: Elaboración Propia
11.3. FACTORES DE CONVERSIÓN

Tabla 91: FACTORES DE CONVERSIÓN

<table>
<thead>
<tr>
<th>Energéticos</th>
<th>Unidades Originales</th>
<th>TEP</th>
<th>Joule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energía Primaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón Antracita Nacional</td>
<td>0.001 ton/kg</td>
<td>700.00 TEP/(10^6 kg)</td>
<td>29.29 TJ/(10^6 kg)</td>
</tr>
<tr>
<td>Carbón Bituminoso Nacional</td>
<td>0.001 ton/kg</td>
<td>593.20 TEP/(10^6 kg)</td>
<td>24.82 TJ/(10^6 kg)</td>
</tr>
<tr>
<td>Carbón Mineral Importado</td>
<td>0.001 ton/kg</td>
<td>730.00 TEP/(10^6 kg)</td>
<td>30.54 TJ/(10^6 kg)</td>
</tr>
<tr>
<td>Leña</td>
<td></td>
<td>360 TEP/(10^6 kg)</td>
<td>15.06 TJ/(10^6 kg)</td>
</tr>
<tr>
<td>Residuos de Biomasa</td>
<td></td>
<td>360 TEP/(10^6 kg)</td>
<td>15.06 TJ/(10^6 kg)</td>
</tr>
<tr>
<td>Bagazo</td>
<td>0.001 ton/kg</td>
<td>150 TEP/(10^6 kg)</td>
<td>6.28 TJ/(10^6 kg)</td>
</tr>
<tr>
<td>Petróleo Crudo</td>
<td>6.290 Bbl / m³</td>
<td>871 TEP/(10^3 m³)</td>
<td>36.42 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>LGN</td>
<td>6.290 Bbl / m³</td>
<td>716 TEP/(10^3 m³)</td>
<td>29.96 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Gas Natural</td>
<td>0.028 pc / m³</td>
<td>966 TEP/(10^6 m³)</td>
<td>40.43 TJ/(10^6 m³)</td>
</tr>
<tr>
<td>Hidroenergía</td>
<td>1.000 GW.h</td>
<td>86 TEP/GW.h</td>
<td>3.60 TJ/GW.h</td>
</tr>
<tr>
<td>Solar</td>
<td>1.000 GW.h</td>
<td>86 TEP/GW.h</td>
<td>3.60 TJ/GW.h</td>
</tr>
<tr>
<td>Óleo</td>
<td>1.000 GW.h</td>
<td>86 TEP/GW.h</td>
<td>3.60 TJ/GW.h</td>
</tr>
<tr>
<td>Biogás</td>
<td>35.315 pc / m³</td>
<td>350 TEP/(10^3 m³)</td>
<td>14.66 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Energía Secundaria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coque Nacional</td>
<td>0.001 ton/kg</td>
<td>675 TEP/(10^6 kg)</td>
<td>28.26 TJ/(10^6 kg)</td>
</tr>
<tr>
<td>Coque Importado</td>
<td>0.001 ton/kg</td>
<td>640.00 TEP/(10^6 kg)</td>
<td>26.78 TJ/(10^6 kg)</td>
</tr>
<tr>
<td>Carbón Vegetal</td>
<td>650 TEP/(106 kg)</td>
<td>27.20 TJ/(106 kg)</td>
<td></td>
</tr>
<tr>
<td>Gas Licuado de Petróleo</td>
<td>6.290 Bbl / m³</td>
<td>598 TEP/(10^3 m³)</td>
<td>25.00 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Etanol</td>
<td>6.290 Bbl / m³</td>
<td>509 TEP/(10^3 m³)</td>
<td>21.28 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Gasohol</td>
<td>6.290 Bbl / m³</td>
<td>747 TEP/(10^3 m³)</td>
<td>31.26 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Gasolina Motor</td>
<td>6.290 Bbl / m³</td>
<td>767 TEP/(103 m³)</td>
<td>32.11 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Kerosene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbo</td>
<td>6.290 Bbl / m³</td>
<td>837 TEP/(103 m³)</td>
<td>35.00 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Diesel Oil</td>
<td>6.290 Bbl / m³</td>
<td>868 TEP/(10^3 m³)</td>
<td>36.32 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>BioDiesel (B100)</td>
<td>6.290 Bbl / m³</td>
<td>796 TEP/(10^3 m³)</td>
<td>33.32 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>DB5</td>
<td>6.290 Bbl / m³</td>
<td>864 TEP/(10^3 m³)</td>
<td>36.17 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Fuel oil</td>
<td>6.290 Bbl / m³</td>
<td>925 TEP/(10^3 m³)</td>
<td>38.69 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Gas Natural Seco</td>
<td>35.315 pc / m³</td>
<td>968 TEP/(10^3 m³)</td>
<td>40.43 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Energía Eléctrica</td>
<td>1.000 GW.h</td>
<td>86 TEP/GW.h</td>
<td>3.60 TJ/GW.h</td>
</tr>
<tr>
<td>Gas de Alto Horno (Sider)</td>
<td>35.315 pc / m³</td>
<td>80 TEP/(10^3 m³)</td>
<td>3.35 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Gas de Coquería (Doe Run)</td>
<td>35.315 pc / m³</td>
<td>480 TEP/(10^3 m³)</td>
<td>20.08 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>Gas de Refinería</td>
<td>6.290 Bbl / m³</td>
<td>1180 TEP/(10^3 m³)</td>
<td>49.37 TJ/(10^3 m³)</td>
</tr>
<tr>
<td>No Energéticos De Coque</td>
<td>890 TEP/(106 kg)</td>
<td>37.24 TJ/(10^6 kg)</td>
<td></td>
</tr>
<tr>
<td>No Energéticos De Petróleo</td>
<td>868 TEP/(103 m³)</td>
<td>36.31 TJ/(10^3 m³)</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 92: RELACIÓN ENTRE UNIDADES DE ENERGÍA

<table>
<thead>
<tr>
<th>Unidades</th>
<th>TJ</th>
<th>kCal</th>
<th>TEP</th>
<th>MW h</th>
<th>MMBTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>TJ</td>
<td></td>
<td></td>
<td>2390E+08</td>
<td>23908</td>
<td>277778</td>
</tr>
<tr>
<td>kCal</td>
<td>4.184E-09</td>
<td>1</td>
<td>1000E-07</td>
<td>1000E-07</td>
<td>1000E-07</td>
</tr>
<tr>
<td>TEP</td>
<td>4.184E-02</td>
<td>100E+07</td>
<td>1</td>
<td>1163000</td>
<td>1163000</td>
</tr>
<tr>
<td>MW h</td>
<td>3.000E-03</td>
<td>800E+05</td>
<td>0.08586</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MMBTU</td>
<td>1.051E-03</td>
<td>2512E+05</td>
<td>0.0251</td>
<td>0.29397</td>
<td>1</td>
</tr>
</tbody>
</table>
11.4. **GLOSARIO DE TÉRMINOS**

11.4.1. Definiciones

B

Bagazo: El Bagazo es el material fibroso, o cáscara, o residuo de una materia que queda después de deshecha la baga y/o la extracción del jugo. Entre éstos se encuentra, el bagazo de la caña de azúcar, de la vid, del arroz, de los cereales, etc. Se utiliza principalmente como combustible para la producción de electricidad en los ingenios azucareros y/o plantas de tratamiento de las materias agrícolas básicas.

Bases lubricantes: Es la materia prima utilizada en la elaboración de un aceite específico a base de aditivos y diferentes procesos químicos.

Biodiesel B100: Biodiesel puro, sin mezcla alguna, que cumple las especificaciones establecidas en las Normas Técnicas Peruanas o, mientras éstas no sean aprobadas, la norma ASTM D 6751-06 en su versión actualizada o las correspondientes normas internacionales.

Biogás: Es el gas, principalmente metano, obtenido de la fermentación anaeróbica de desechos biomásicos.

Biomasa: Materia orgánica no fósil de origen biológico que puede ser utilizada con fines energéticos para la producción de calor y algunas veces también de electricidad. Bajo este concepto se agrupan el bagazo, la bosta, la yareta y los residuos agrícolas.

Bosta: La Bosta consiste en el excremento del ganado vacuno secado al ambiente en forma de bloques, que se utiliza como piezas de combustible para cocinas y hornos domésticos. En sentido estricto es el resultado del proceso digestivo, y se refiere a los elementos desechados por un organismo vivo. Este elemento constituye el combustible de las poblaciones ubicadas en el área rural. La bosta es utilizada en localidades muy aisladas.

Butano: Un hidrocarburo que consiste de cuatro átomos de carbono y diez átomos de hidrógeno. Normalmente se encuentra en estado gaseoso pero se licua fácilmente para transportarlo y almacenarlo; se utiliza en gasolinas, y también para cocinar y para calentar.

C

Carbon antracítico: El carbón antracítico es un combustible con alto contenido de carbono fijo y bajo contenido de material volátil, comparado con el carbón bituminoso y sub bituminoso. Además, tiene una alta temperatura de ignición y de fusión de las cenizas, por lo que es utilizado en industrias medianas. Aunque puede ser utilizado en sistemas de alimentación con carbón pulverizado, su uso se limita a pequeñas plantas en las que se utilizan parrillas o unidades de alimentación manual. La combustión de este carbón en
calderas convencionales es un poco difícil, debido a su alto contenido de cenizas y humedad.

Carbón bituminoso: Carbón con mucha sustancia carbonosa y constituyentes gaseosos, y del 15 al 50 % de sustancia volátil; carbón suave; carbones distintos de la antracita y del carbón con bajos productos volátiles y el lignito. Tiene un color pardo oscuro a negro, y arde con llama humeante y luminosa. Cuando se elimina la sustancia volátil del carbón bituminoso, mediante un tratamiento en ausencia de aire, el carbón e convierte en coque.

Carbón mineral: Combustible mineral sólido, compuesto principalmente de carbono, con pequeñas cantidades de nitrógeno, oxígeno, azufre y otros elementos.

Carbón vegetal: Es el combustible obtenido de la destilación destructiva de la madera, en ausencia de oxígeno, en las carboneras.

Carboneras: Esencialmente se trata de un horno donde se efectúa la combustión parcial de la leña, produciéndose carbón vegetal, productos no volátiles y volátiles, y que generalmente estos últimos no son aprovechados. Debe observarse que la madera, en la forma de carbón vegetal, tiene un poder calorífico mayor.

Cementeras: Plantas industriales que procesan caliza, arcilla, arena, mineral de hierro y/o yeso para producir cemento.

Centrales eléctricas: Estos centros de transformación están constituidos según el caso, por centrales hidroeléctricas, centrales termoeléctricas convencionales con turbinas a vapor, turbinas a gas, motores de combustión interna, centrales nucleoeléctricas y geotermoelectricas.

Consumo propio: El consumo propio es la parte de energía primaria y secundaria que el propio sector energía utiliza para su funcionamiento.

Coque: Material sólido no fundible, de alto contenido de carbono, obtenido como resultado de la destilación destructiva del petróleo en refinerías o del carbón mineral en las coquerías.

Coquerías y altos hornos: Se encuentran en la industria siderúrgica; el carbón mineral se transforma en coque y gas de coquería en la coquería; el coque pasa luego al alto horno del cual se obtiene arrabio y gas de alto horno. En las coquerías de tratamiento del carbón mineral se obtiene coque, gas de coquería y productos no-energéticos (benzoles, alquitranes, etc.). Una parte del coque se obtiene en la producción de gas de alto horno y, la otra parte, se consume en el proceso de reducción del mineral en el alto horno.
Dendroenergía: Energía proveniente de la madera. Comprende la leña y el carbón vegetal.

Derivados de carbón mineral: En este grupo se incluyen el coque de coqueería y los gases tanto de coqueería como de los altos hornos.

Diesel: Es una fracción destilada intermedia del petróleo con alto contenido de hidrocarburos alifáticos y de alto grado de pureza. Es un combustible concebido y normalizado para ser empleado en motores de combustión interna con ciclo termodinámico Diesel.

Diesel B2: Es la mezcla que contiene diesel al 98% y biodiesel B100 al 2%.

Diesel B5: Es la mezcla en volumen que contiene diesel al 95% y biodiesel B100 al 5%.

Dióxido de carbono: Compuesto por un átomo de carbono y dos átomos de oxígeno. Recuperado del gas de síntesis en la producción de amoníaco, de gases de chimenea (producto de combustión), y como subproducto del craqueo de hidrocarburos y de la fermentación de carbohidratos. Usado principalmente en la fabricación de hielo seco y de bebidas carbonatadas, como extintor de incendio, en la producción de atmósfera inerte y como desemulsificante en la recuperación terciaria de petróleo.

Electricidad: Es la energía transmitida por electrones en movimiento. Se incluye la energía eléctrica generada con cualquier recurso, sea primario o secundario, en plantas hidroeléctricas, térmicas, geotérmicas o nucleares.

Energía Primaria: Se entiende por energía primaria a las distintas fuentes de energía tal como se obtienen en la naturaleza, ya sea: en forma directa como en el caso de la energía hidráulica o solar, la leña y otros combustibles vegetales; o después de un proceso de extracción como el petróleo, carbón mineral, geoenergía, etc.

Energía Secundaria: Se denomina energía secundaria a los diferentes productos energéticos que provienen de los distintos centros de transformación y cuyo destino son los diversos sectores del consumo y/u otros centros de transformación.

Energía Solar: Es la energía del sol aprovechada principalmente en calentamiento de agua, secado de granos, cocción de alimentos y generación de electricidad a través de paneles fotovoltaicos.

Etanol: Es el alcohol etílico cuya fórmula química es CH3-CH2-OH y se caracteriza por ser un compuesto líquido, incoloro, volátil, inflamable y soluble en agua. Para los efectos de este documento se entiende como el alcohol obtenido
a partir de caña de azúcar, sorgo, maíz, yuca, papa, arroz y otros cultivos agrícolas.

Etanol Anhidro: Tipo de alcohol etílico que se caracteriza por tener como máximo 0.5% (cero coma cinco por ciento) de humedad y por ser compatible con las gasolinas con las cuales se puede mezclar para producir un combustible oxigenado para uso motor.

Exportación: Es la cantidad de energía primaria y secundaria que un país destina al comercio exterior.

G

Gas Distribuido: Gas natural seco que circula a través de una red (gaseoducto) para ser distribuido a los usuarios finales.

Gas Industrial: Agrupa los gases combustibles remanentes de la destilación del coque y altos hornos.

Gas Licuado de Petróleo: Hidrocarburo que, a condición normal de presión y temperatura, se encuentra en estado gaseoso, pero a temperatura normal y moderadamente alta presión es licuable. usualmente está compuesto de propano, butano, propileno y butileno o mezcla de los mismos. En determinados porcentajes forman una mezcla explosiva. Se le almacena en estado líquido, en recipientes a presión.

Gas Natural: Mezcla de hidrocarburos en estado gaseoso, puede presentarse en su estado natural como Gas Natural Asociado y Gas Natural no Asociado. Puede ser húmedo si tiene Condensado, o ser seco si no lo contiene.

Gasohol: Es la mezcla que contiene gasolina (de 97, 95, 90, 84 octanos y otras según sea el caso) y Alcohol Carburante.

Gasolina de Aviación: Es una mezcla de naftas reformadas de elevado octanaje, de alta volatilidad y estabilidad y de un bajo punto de congelamiento, que se usa en aviones de hélice con motores de pistón.

Gasolina Motor: Mezcla de hidrocarburos líquidos, livianos, obtenidos de la destilación del petróleo y/o del tratamiento del gas natural, cuyo rango de ebullición se encuentra generalmente entre los 30-200 grados centígrados.

Gasolina Natural: Mezcla altamente volátil de hidrocarburos de propano y más pesados que forma parte de los líquidos del gas natural. Normalmente se adiciona a la gasolina automotriz para incrementar su presión de vapor, así como el arranque a bajas temperaturas. La gasolina natural es también utilizada en petroquímica para proveer isobutano e isopentano que son utilizados en los procesos de alquilación.

GLP: Gas licuado de Petróleo. El gas licuado del petróleo (GLP) es la mezcla de gases condensables presentes en los líquidos del gas natural o formando parte del petróleo crudo. Los componentes del GLP, aunque a temperatura y presión
ambientales son gases, son fáciles de condensar, de ahí su nombre. En la práctica, se puede decir que los GLP son una mezcla de propano y butano.

H

Hexano: Cualquiera de los cinco hidrocarburos parafínicos líquidos, isoméricos y volátiles presentes en el petróleo. Su fórmula química es C₆H₁₄.

Hidrocarburos: Compuesto orgánico, gaseoso, líquido o sólido, que consiste principalmente de carbono e hidrógeno.

Hidroenergía: Denominado también energía hidráulica o energía hídrica, es aquella que se obtiene del aprovechamiento de las energías cinética y potencial de la corriente de ríos, saltos de agua o mareas. Es un tipo de energía verde.

I

Importación: Incluye todas las fuentes energéticas primarias y secundarias originadas fuera de las fronteras y que ingresan al país para formar parte del sistema de la oferta total de energía.

Índice de Desarrollo Humano: El Índice de Desarrollo Humano (IDH) es una medición por país, elaborada por el Programa de las Naciones Unidas para el Desarrollo (PNUD). Se basa en un indicador social estadístico compuesto por tres parámetros:

- *vida larga y saludable* (medida según la esperanza de vida al nacer)
- *educación* (medida por la tasa de alfabetización de adultos y la tasa bruta combinada de matriculación en educación primaria, secundaria y terciaria)
- *nivel de vida digno* (medido por el PIB per cápita en dólares americanos)

Intensidad Energética: Indicador que mide la productividad de la energía en términos económicos o sociales. Usualmente se expresa en unidades de energía por PBI.

Inventarios: Son las Existencias ("stocks") Iniciales (01 de enero) y las Existencias Finales (31 de diciembre) de un año determinado, en las instalaciones de almacenamiento de los diferentes productos.

J

Joule: Es la unidad del Sistema Internacional para la energía y el trabajo. Se define como el trabajo realizado por la fuerza de 1 newton en un desplazamiento de 1 metro. El joule también es igual a 1 vatio por segundo, por lo que eléctricamente es el trabajo realizado por una diferencia de potencial de 1 voltio y con una intensidad de 1 amperio durante un tiempo de 1 segundo, el símbolo del joule es la letra J.

K
Kerosene-Jet: Es un combustible líquido constituido por la fracción del petróleo que se destila entre los 150 y 300 grados centígrados. El Turbo Jet es un kerosene con un bajo punto de congelamiento.

L

Ladrilleras: Plantas industriales que después de un proceso de moldeo, secado y cocción de una pasta arcillosa, obtienen ladrillos, cuyas dimensiones suelen rondar 24 x 11,5 x 6 cm.

Leña: Conjunto de ramas, matas y troncos extraídos de árboles y arbustos, cortados en trozos que se utilizan principalmente en el sector doméstico para producir calor mediante su combustión. La leña es la madera utilizada para hacer fuego en estufas, chimeneas o cocinas. Es una de las formas más simple de biomasa.

Líquidos de gas natural: Mezclas de hidrocarburos líquidos que son extraídos del Gas natural mediante procedimientos de condensación y absorción y se clasifican de acuerdo a su presión de vapor en: condensados, gasolina natural y gas licuado de petróleo (GLP).

M

Material de Corte: generalmente gasóleos, se utiliza para alivianar cargas de crudos pesados.

Matriz: La matriz matemática es el conjunto de números o símbolos algebraicos colocados en líneas horizontales y verticales. La matriz energética es la tabla formada por todas las fuentes energéticas colocadas en las columnas y todas las actividades, tanto de oferta, centros de transformación y demanda, que intervienen en el quehacer del sector energético del país, ubicados en las filas.

Mercado eléctrico: El Mercado eléctrico es aquel lugar donde se encuentran la oferta y la demanda.

Metano: El metano es un hidrocarburo gaseoso, incoloro e inodoro, inflamable, producto de la descomposición de las materias orgánicas en los pantanos o minas, o por carbonizado del carbón. Se utiliza como combustible y como materia prima en la síntesis químicas. El metano también puede producirse mediante ciertos procesos de conversión de biomasa.

Metro cúbico: Unidad de medida de volumen del Sistema Métrico Decimal, equivalente a 6,289 barriles y 264,170 galones de Estados Unidos de América.

Monóxido de carbono: Gas inodoro, incoloro y muy tóxico. Si se respira, el monóxido de carbono impide que el oxígeno en sangre llegue al resto del cuerpo. Se produce por la quema incompleta de combustibles como el gas natural, el carbón, la gasolina y el tabaco.

N

Nafta Craqueada: Hidrocarburo del grupo de las gasolinas que se produce en las unidades de ruptura catalítica. Se utiliza como componente en la preparación o mezcla de gasolinas.
NOx: El NOx es un término genérico que hace referencia a un grupo de gases muy reactivos [tales como el óxido nitrico (NO) y el dióxido de nitrógeno (NO₂)] que contienen nitrógeno y oxígeno en diversas proporciones. Muchos de los óxidos de nitrógeno son incoloros e inodoros. Sin embargo, el dióxido de nitrógeno (NO₂), un contaminante común, forma en el aire junto a las partículas en suspensión una capa entre rojiza y marrón que cubre muchas zonas urbanas.

En la atmósfera, los óxidos de nitrógeno pueden contribuir a la formación de ozono fotoquímico (smog o niebla contaminante) y tener consecuencias para la salud. También contribuye al calentamiento global y puede provocar lluvia ácida.

P

Partículas suspendidas: Son todas las partículas microscópicas sólidas y líquidas, de origen humano o natural, que quedan suspendidas en el aire durante un tiempo determinado. Dichas partículas tienen un tamaño, composición y origen muy variables y muchas de ellas son perjudiciales. Las partículas en suspensión pueden presentarse en forma de cenizas volantes, hollín, polvo, niebla, gas, etc.

PBI: Producto Bruto Interno. El PBI es el valor monetario de los bienes y servicios finales producidos por una economía en un período determinado. Producto se refiere a valor agregado; interno se refiere a que es la producción dentro de las fronteras de una economía; y bruto se refiere a que no se contabilizan la variación de inventarios ni las depreciaciones ó apreciaciones de capital.

Petróleo crudo: Mezcla de Hidrocarburos que tiene un punto de inflamación menor 65,6° C y que no ha sido procesado en Refinerías

Pérdidas de transformación: Son aquellas que ocurren durante las actividades de transformación.

Pérdidas de transporte y distribución: Son aquellas que ocurren durante las actividades de transporte y distribución.

Petróleo industrial: Es el residuo de la refinación del petróleo y comprende todos los productos pesados. Generalmente es utilizado en calderas, plantas eléctricas y navegación.

Pie cúbico. La unidad más común utilizada para la medición de volumen del gas. Es la cantidad de gas necesaria para llenar un volumen de un gas cúbico en determinadas condiciones de temperatura, presión y vapor de agua.

Plantas de procesamiento de gas natural: En las plantas de tratamiento, el gas natural húmedo se procesa en principio con el fin de separar los componentes condensables de la corriente de gas en plantas de separación. Posteriormente, de la fase líquida separada, se procura recuperar hidrocarburos líquidos compuestos, como la gasolina y naftas, hidrocarburos puros como butano, propano, etano o mezcla de ellos y productos no-energéticos, como el dióxido de carbono, a través de un proceso de separación física de los componentes.
Propano: Hidrocarburo de cadena abierta que tiene tres (3) átomos de carbono.

R

Refrinerías: Instalación industrial, en la cual el Petróleo, gasolinas naturales u otras fuentes de Hidrocarburos son convertidos en Combustibles Líquidos. Puede incluir la elaboración de productos diferentes a los combustibles como Lubricantes, Asfaltos y Breas, Solventes, etc.

Reservas probadas de hidrocarburos: Cantidades de Hidrocarburos estimadas a una fecha determinada, cuya existencia está demostrada con una certeza razonable por información geológica y de ingeniería, y que pueden ser recuperadas bajo las condiciones económicas, métodos de operación y regulaciones gubernamentales vigentes.

S
Sector Agropecuario y Agroindustrial: El consumo de energía de este sector comprende las actividades agropecuarias y agroindustriales.

Sector Comercial: El consumo de energía de este sector abarca los usos de todas las actividades comerciales, incluye hospitales, colegios, restaurantes, hoteles, lavanderías y empresas financieras entre los establecimientos más importantes.

Sector Industrial: Es el sector de consumo más importante, comprende todas las actividades de la industria manufacturera, excepto aquellas relacionadas con la elaboración de productos de pescado y la fabricación de azúcar; también incluye la construcción de viviendas, edificios y obras civiles en general.

Sector Minero Metalúrgico: Este sector abarca el consumo de energía de las actividades de minería extractiva y la industria minera.

Sector Pesquera: El sector pesquera agrupa el consumo de energía de las actividades de pesca extractiva y la industria pesquera.

Sector Público: El consumo de energía del sector público comprende al consumo de las fuerzas armadas, administración pública y servicios de agua y desagüe, en ellos se incluyen las municipalidades, ministerios, actividades de defensa y de mantenimiento del orden público y de seguridad, entre las más importantes.

Sector Residencial: El consumo de energía de este sector comprende a los usos que se dan debido a las actividades domésticas desarrolladas en los hogares urbanos y rurales en el ámbito nacional.

Sector Transporte: Considere el consumo de energía de las actividades de transporte en general. Incluye las actividades desarrolladas por los medios de transportes terrestre carretero y ferroviario, acuático y marítimo. Excluye el transporte al interior de los establecimientos agropecuarios, comerciales, mineros e industriales.
Sendero energético: El sendero energético representa gráficamente las variaciones sufridas por la intensidad energética de la actividad económica interna (energía ofertada por unidad de PBI) en función de la evolución del sistema económico, medido por el PBI per cápita.

Solventes: Son aquellos Hidrocarburos que se obtienen en los procesos de destilación de petróleo crudo y del fraccionamiento de los líquidos del gas natural o del gas natural. Para efectos de la presente norma se consideran Solventes: Solvente Nº 1, Solvente Nº 3, Pentano, Hexano y Condensados del Gas Natural, para su aplicación como solvente.

Solventes químicos: Los solventes químicos, por lo general, son alcanolaminas en solución acusa que reaccionan químicamente y reversiblemente con los gases ácidos, por consiguiente, al elevar la temperatura se puede recuperar el solvente.

SOx: Compuestos integrados por azufre y oxígeno, producido por la combustión del azufre en el carbón, el petróleo, y el gas.

T

Tera: es un prefijo del Sistema Internacional de Unidades que indica un factor de 10^{12}, es decir, 1 000 000 000 000, el símbolo de este prefijo es al letra T.

Terajoule: 1 terajoule es equivalente a 1×10^{12} joule y se puede escribir como 1 TJ.

U

Unidades Originales: son las unidades en las que se reportan los diferentes energéticos para la elaboración del Balance.

Uranio: Elemento radiactivo con número atómico 92 y que, en la forma que se encuentra en los minerales naturales, tiene un peso atómico promedio aproximado de 238. Los dos isótopos naturales principales del uranio son el uranio-235, que es fisionable, y el uranio-238, que es férril. El uranio natural incluye también una cantidad pequeña de uranio-234. El uranio constituye la materia prima básica de la energía nuclear. Su símbolo químico es U.

Uso propio: Es la parte de la oferta total de energía primaria y secundaria, que el propio sector energético necesita para su funcionamiento. Es transformado en energía útil como calor, trabajo mecánico, iluminación, etc.

Y

Yareta: La yareta es una planta umbelífera que crece en zonas andinas de gran altitud. Este vegetal después de ser secado al ambiente es quemado como fuente combustible para uso doméstico generalmente en zonas rurales. Esta planta es conocida también por sus propiedades curativas.
11.4.2. Siglas

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bbl</td>
<td>Unidad de medida de volumen, Barril.</td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bagazo.</td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Bosta & Yareta.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>Metano.</td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Carbón mineral.</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Monóxido de carbono.</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>Dióxido de carbono.</td>
<td></td>
</tr>
<tr>
<td>CONAM:</td>
<td>Consejo Nacional del Ambiente.</td>
<td></td>
</tr>
<tr>
<td>CV</td>
<td>Carbón vegetal.</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGE</td>
<td>Dirección General de Electricidad.</td>
<td></td>
</tr>
<tr>
<td>DGEE</td>
<td>Dirección General de Eficiencia Energética</td>
<td></td>
</tr>
<tr>
<td>DGH</td>
<td>Dirección General de Hidrocarburos.</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td>Diesel Oil.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Electricidad.</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GD</td>
<td>Gas Distribuido.</td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>Gas Licuado de Petróleo GLP.</td>
<td></td>
</tr>
<tr>
<td>GN</td>
<td>Gas Natural.</td>
<td></td>
</tr>
<tr>
<td>GM</td>
<td>Gasolina de motor.</td>
<td></td>
</tr>
<tr>
<td>GR</td>
<td>Gas de Refinería.</td>
<td></td>
</tr>
<tr>
<td>GWh</td>
<td>Unidad de medida de energía, giga vatío hora.</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE</td>
<td>Hidroenergía.</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change.</td>
<td></td>
</tr>
</tbody>
</table>
K

kg : Unidad de medida de masa, Kilogramo.
kj : Kerosene Jet.

L

LE : Leña.
LGN : Líquidos de gas natural.

M

m³ : metro cúbico.
MEM : Ministerio de Energía y Minas.
MINAG : Ministerio de Agricultura.
MW : Unidad de medida de energía, megavatio.

N

NE : No energético.

O

OLADE : Organización Latinoamericana de Energía.

P

pc : pie cúbico.
PI : Petróleo Industrial.
PNUD : Programa de Naciones Unidas para el Desarrollo.
PR : Petróleo Residual.
PT : Petróleo crudo.

S

SEIN : Sistema Eléctrico Interconectado Nacional.
SUNAT : Superintendencia Nacional de Administración Tributaria.

T

TJ : terajoule.
Ton : tonelada.